![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/620453/image.png)
How can I demonstrate that a MA(2) process is invertible?
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Filippo Patrignani
am 14 Mai 2021
Kommentiert: Filippo Patrignani
am 17 Mai 2021
I have to solve this exercise: Consider the following MA(2) process yt = 1 − 0.5εt−1 + 0.3εt−2 + εt . Is the moving average process invertible? Explain. Hint: Use Matlab to compute the roots of the relevant polynomial. Can anyone help me?.
Thanks
0 Kommentare
Akzeptierte Antwort
Pratyush Roy
am 17 Mai 2021
Hi,
Since the constant term does not matter in terms of whether the series converges or diverges, we can ignore it and hence the equation can be written as:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/620453/image.png)
Here z(t) = y(t)-1
Now, the relevant polynomial becomes p(x) = 1-0.5x+0.3x^2;
To check whether the model is invertible or not, we compute the roots of p(x) = 0 using the roots method.
Hope this helps!
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!