solving bvp differential equation

1 Ansicht (letzte 30 Tage)
Moj
Moj am 13 Jul. 2013
I want to solve bvp differential equation. but after a lot of effort I couldn't . my equation is:
(k1*cos(teta)^2+k3*sin(teta)^2)*(d^2(teta)/dz^2)+0.5*(k3-k1)*2*cos(teta)*sin(teta)*(d(teta)/dz)^2+(mu)^-1*kapa*b^2*sin(teta)*cos(teta)=0
NOTE:
1. k1, k3, kapa, mu are constants.
2. teta is a function of z.
3. my boundary condition is : teta(z=0)=0 , teta(z=d)=0 , teta'(z=d/2)=0
  • I don't know to write third bondary condition ( my interval is [0,d]) *I try to solve it with the example of 3 in BVP_tutorial.pdf but I can't ( faced with a lot error)
  • My code is:*
function mat4bvp
w = 2;
L=5*10^-6; % is d
solinit = bvpinit(linspace(0,L,10),@mat4init,w);
sol = bvp4c(@mat4ode,@mat4bc,solinit);
fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)
xint = linspace(0,L);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 L 0 1.6])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% -----------------------------------------------------------------------------
% w is magnetic field (B)
function dydx = mat4ode(x,y,w)
mu = 4*pi*10^-7;
kapa=9.5*10^-7;
k11=5.3*10^-12;
k33=7.3*10^-12;
dydx = [ y(2)
-0.5*(k33-k11)*2*cos(y(x))*sin(y(x))*y(2)-((mu)^-1*kapa*w^2*sin(y(x))*cos(y(x)))];
% ------------------------------------------------------------------------------
function res = mat4bc(ya,yb,w)
res = [ ya(1)
yb(1)];
% ------------------------------------------------------------
function yinit = mat4init(x)
L=5*10^-6;
yinit = [cos((pi/L)*x)];

Antworten (0)

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by