what is IW and LW ; how 3 layers ( output code of nprtool )
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
% Input 1
x1_step1.xoffset = 0;
x1_step1.gain = 0.200475452649894;
x1_step1.ymin = -1;
% Layer 1
b1 = [21;-18;-15;12;-9;6;-3;0;3;-6;-9;-12;15;-18;-21];
IW1_1 = [-21;21;21;-21;21;-21;21;-21;21;-21;-21;-21;21;-21;-21];
% Layer 2
b2 = [-1.5481522238423293114;-0.7740761119211646557;0;-0.7740761119211646557;1.5481522238423293114];
IW2_1 = [0.18591536098364511154;0.40639192253934214305;-0.27042472258088517956;-0.13412187216347298824;0.54252530242902852198];
LW2_1 = [0.24501255112064976305 -0.603300841276200428 -0.31452233587919281588 0.07939424409636260116 0.44177212706927815322 -0.40403354541199126837 0.50751435892984475551 -0.54319460220556725627 0.47092317372014752541 -0.014194546924077773228 0.11388969568404412602 -0.60856374907308730116 0.1199469037241999575 0.54482429435198376222 0.073698545566984838273;-0.32079984547876161383 -0.15570837924466876534 0.54270824861039013154 -0.012900971754842980449 -0.58084194695714630452 0.56199828111983707313 0.49164542229830543452 0.31541117114819716694 -0.59500114066111353672 0.28464496073269612841 -0.24308627374845612201 0.26317896635071003075 0.12964031314271853845 0.46422927590403095799 0.1400966963385319175;0.3661099146813505123 -0.088863383421529829054 0.50751759546088714981 -0.32434151025360968834 -0.23677560402537684014 0.060968908460366254276 -0.024648639739306959368 -0.51859575552674685994 0.48481885254804552021 -0.41902180208207762124 0.65900575796944338425 0.51813679145102342627 0.023153701831279262929 -0.54490372774253270638 -0.28066527042325184471;-0.28720257525894682393 -0.26883262902038468356 -0.14117619198974820649 0.67274961594904902906 0.34170048870571251287 -0.34148005050612378897 -0.07865734225189835449 -0.19791789712245583255 -0.29112457961187176991 -0.38974765887977130818 0.54393856786292726913 -0.5243254228375202608 -0.67653062572906819128 -0.19977619038530908258 0.4095533661557646532;-0.31425113275532029489 -0.29530014251238639877 -0.029059725654305205295 -0.44664224747398562076 0.20384193873498809846 0.11094219649895625812 -0.26579744335546978684 -0.14702767416474224471 -0.35250979683052890978 0.6725727859643003681 -0.43767651132380086532 -0.65088838030431739323 0.2667693286280342635 -0.36437893831932721689 0.4174388089989150008];
% Layer 3
b3 = -0.65223372011098734724;
IW3_1 = 0.56218453182077365859;
LW3_1 = [-0.29780313517079992636 -0.89140529220004594002 0.41740923395844964361 0.98585688260799231308 -0.67504702962022644641 -0.77286732265590618596 0.82575085177308693574 -0.036686039254889557526 0.70361190401670703487 0.61982760620841070853 -0.62648091146031958942 -0.50560028650867350208 -0.89162231726546115063 0.21792291290775667179 0.55446485846902082706];
LW3_2 = [0.022128178225443217997 -0.94449982310345648173 0.98077056313375110541 0.0018798475072103748573 -0.33600502607768722996];
% Output 1
y1_step1.ymin = -1;
y1_step1.gain = 0.2;
y1_step1.xoffset = 0;
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Define Shallow Neural Network Architectures finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!