Symbolic derivative of an arrayfun
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello everyone,
I am trying to compute the derivative of the piecewise function F_Ma, which I called f_Ma.
infty = 1e9; zero = 1e-9 ; Pi = 3.1415 ;
%% PARAMETERS
type =1;
p = [1.585 1.585 10] ;
H=100 ; NA = 10 ;
urbLev = 3 ;
alpha = [2, 3, 3] ;
tau = 0.31623 ; sigma_n2 = 1e-12 ;
m = [2 1 1] ;
Rd = 1e3 ;
Ru = [0 0.3 0.7]' * Rd ;
eta = [0.9772 0.007943 1 ; 0.7943 0.01 1 ; 0.6918 0.005 1 ; 0.5888 0.0004 1] ; eta(:,3) = eta(:,1) ;
Sa = [4.88 9.6117 12.0810 27.304]' ; Sb = [0.429 0.1581 0.1139 0.0797]' ;
nsteps = 1 ;
Z = linspace(zero, max(Ru)+Rd, nsteps) ;
%% CDF ANALYSIS
for u = 1:length(Ru)
IND{u,1} = @(z) z<= Rd-Ru(u) ;
IND{u,2} = @(z) (Rd-Ru(u) < z) & (z < Rd+Ru(u)) ;
IND{u,3} = @(z) z >= Rd+Ru(u) ;
Betai{u} = @(z) real( (z>0).*acos( (z.^2 + Ru(u).^2 - Rd.^2) ./ ( (z>0).*2.*z.*Ru(u) + (z==0)) ) ) ;
dBetai_dz{u} = @(z) (z>0 ).*(Ru(u).^2 - z.^2 - Rd.^2) ./ ...
( (z>0) .* (z .* sqrt(4*z.^2 .* Ru(u).^2 - (z.^2 + Ru(u).^2 - Rd.^2).^2)) + (z==0) ) ;
Betai{u} = @(z) real( acos( (z.^2 + Ru(u).^2 - Rd.^2) ./ ( 2.*z.*Ru(u) ) ) ) ;
dBetai_dz{u} = @(z) (Ru(u).^2 - z.^2 - Rd.^2) ./ ...
( z .* sqrt(4*z.^2 .*Ru(u).^2 - (z.^2 + Ru(u).^2 - Rd.^2).^2) ) ;
zX{u} = @(beta) Ru(u).*cos(beta) + sqrt(Rd.^2 - Ru(u).^2.*sin(beta).^2) ;
Sigma{1} = @(z) pi*z.^2 ;
Sigma{2} = @(z) Betai{u}(z).*z.^2 + 1/2*integral(@(beta) zX{u}(beta).^2, Betai{u}(z),2*pi-Betai{u}(z),'ArrayValued',1) ;
Sigma{3} = @(z) pi*Rd^2 ;
dSigma{1} = @(z) 2*pi*z ;
dSigma{2} = @(z) 2*z.*Betai{u}(z) + z.^2 .* dBetai_dz{u}(z) - zX{u}(Betai{u}(z)).^2 .* dBetai_dz{u}(z) ;
dSigma{3} = @(z) 0 ;
P_Ma{1} = @(z) 1./(1+Sa(urbLev)*exp(-Sb(urbLev)*(180/pi*atan(H./z)-Sa(urbLev)))) ;
P_Ma{2} = @(z) 1-P_Ma{1}(z) ;
for M = 1:2
for i = 1:3
fDelta_i = @(d,z) 1./Sigma{i}(z) .* (dSigma{1}(d).*IND{u,1}(d)+dSigma{2}(d).*IND{u,2}(d)+dSigma{3}(d).*IND{u,3}(d)); % Only because we are going to integrate over d from 0 to z
Ups_i = @(z_) arrayfun (@(z) integral(@(d) fDelta_i(d,z) .* (1-P_Ma{M}(d)), zero,z,'ArrayValued',1), z_) ;
dUps_i = @(z_) arrayfun(@(z) fDelta_i(z,z).*(1-P_Ma{M}(z)) - dSigma{i}(z)./(Sigma{i}(z).^2) .* ...
integral(@(d) dSigma{1}(d).*IND{u,1}(d)+dSigma{2}(d).*IND{u,2}(d)+dSigma{3}(d).*IND{u,3}(d), 0,z,'ArrayValued',1), z_) ;
ps = @(z) Sigma{i}(z) / (pi*Rd^2) ;
dps = @(z) dSigma{i}(z) / (pi*Rd^2) ;
P_k = @(z,k) nchoosek(NA,k) .* ps(z).^k .* (1-ps(z)).^(NA-k) ;
dP_k = @(z,k) nchoosek(NA,k) .* ps(z).^(k-1) .* (1-ps(z)).^(NA-k-1) .* dps(z) ;
Fbar_Ma_i{u,i} = @(z_) arrayfun(@(z) 0, z_) ;
% f_Ma_i{u,i} = Fbar_Ma_i{u,i} ;
for k = 0:NA
Fbar_Ma_i{u,i} = @(z_) arrayfun(@(z) Fbar_Ma_i{u,i}(z) + nchoosek(NA,k) .* (ps(z)).^k .* (1-ps(z)).^(NA-k) .* (Ups_i(z)).^k, z_) ;
F_Ma_i{u,i} = @(z_) arrayfun(@(z) 1-Fbar_Ma_i{u,i}(z), z_) ;
% f_Ma_i{u,i} = @(z_) arrayfun(@(z) f_Ma_i{u,i}(z) + dP_k(z,k) .* Ups_i(z) + P_k(z,k) .* dUps_i(z) , z_) ;
end
syms z
f_Ma_i{u,i} = eval( ['@(z)' char( diff( Ups_i(z) ) )] )
end
F_Ma{u,M} = @(z_) arrayfun(@(z) 1- ( min(realmax,Fbar_Ma_i{u,1}(z)) .* IND{u,1}(z) + min(realmax,Fbar_Ma_i{u,2}(z)) .* IND{u,2}(z) ...
+ min(realmax,Fbar_Ma_i{u,3}(z)) .* IND{u,3}(z) ), z_) ;
f_Ma{u,M} = @(z_) arrayfun(@(z) - ( min(realmax,f_Ma_i{u,1}(z)) .* IND{u,1}(z) + min(realmax,f_Ma_i{u,2}(z)) .* IND{u,2}(z) ...
+ min(realmax,f_Ma_i{u,3}(z)) .* IND{u,3}(z) ), z_) ;
end
end
The problem is that either when I computed manually and wrote it on MATLAB, when I used the symbolic variable, or when I tried to compute the derivative for each one of the pieces, I got errors like 'Index in position 1 exceeds array bounds (must not exceed 2)' or 'A and B must be floating-point scalar' for the function integral (although I'm using arrayfun).
Please let me know any suggested approach to compute this derivative or fix the errors I got.
Thank you in advance!
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!