Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

Simple Question about Optimization of Nested IF-FOR loops

1 Ansicht (letzte 30 Tage)
Mohsen
Mohsen am 17 Jun. 2013
Geschlossen: MATLAB Answer Bot am 20 Aug. 2021
Does any one know how to optimize this code so that it runs faster:
for i=1:iNZ;
if iPointsinSlice>0;
for m=1:iNX;
for l=1:iNY;
if SliceMaskUr(m,l)==1;
DoseCubeU(m+(l-1)*iNX+i*iNX*iNY)=100*SumDose(m,l,i)/RX_Dose;
end
end
end
end
end
Your help is much appreciated! Thanks a lot!

Antworten (5)

Roger Stafford
Roger Stafford am 17 Jun. 2013
Is 'iPointsinSlice' a scalar? If so and if it is not positive, nothing will happen here.
Next, don't you mean "m+(l-1)*iNX+(i-1)*iNX*iNY" as the index to 'DoseCubeU'? As it stands it will vary from 1+iNX*iNY to iNX*iNY*iNZ+iNX*iNY. Assuming my guess is correct, do this:
if iPointsinSlice > 0
t = repmat(SliceMaskUr==1,1,1,iNZ);
DoseCubeU(t) = (100/RX_Dose)*SumDose(t);
end
In case 'iPointsinSlice' is not a scalar you will have to correct your code before we can see how to handle it.
  1 Kommentar
Mohsen
Mohsen am 17 Jun. 2013
'iPointsinSlice' is a scalar. "m+(l-1)*iNX+(i-1)*iNX*iNY" is used as the index to 'DoseCubeU. But your code gives the error that REPMAT has too many arguments. How should I fix it?

Roger Stafford
Roger Stafford am 17 Jun. 2013
Sorry! It should have been:
t = repmat(SliceMaskUr==1,[1,1,iNZ]);
  1 Kommentar
Mohsen
Mohsen am 18 Jun. 2013
I changed
DoseCubeU(m+(l-1)*iNX+i*iNY*iNX)=100*SumDose(m,l,i)/RX_Dose;
to
DoseCubeU(double(m)+double((l-1))*double(iNX)+double((i-1))*double(iNY)*double(iNX))=100*SumDose(m,l,i)/RX_Dose;
Otherwise the indexing will not be correct. For example, iNX*iNY*iNZ (which is 120*120*11) becomes equal to 65535 (which is wrong). We should write it as double(iNX)*double(iNY)*double(iNZ) in order to get the correct results (ie. 158400).
By making this change, both the indexing (the initial) method and the subscription method (below) give the same results. But these results are different than any of the other proposed methods.
So, how can I optimize:
for i=1:iNZ;
if iPointsinSlice>0;
for m=1:iNX;
for l=1:iNY;
if SliceMaskUr(m,l)==1;
DoseCubeU(m,l,i)=100*SumDose(m,l,i)/RX_Dose;
end
end
end
end
end

Mohsen
Mohsen am 17 Jun. 2013
This code doesn't give me the same result as my initial code. Please note that the purpose of "m+(l-1)*iNX+i*iNX*iNY" is to reshape the SumDose array which is (iNX by iNY by iNZ) to a one dimensional array (1 by iNX*iNY*iNZ).
I tried also
if SliceMaskUr==1;
DoseCubeU= reshape(SumDose,1,[iNX iNY iNZ])*(100/RX_Dose);
end
but it didn't work neither...
Any insight?
  4 Kommentare
Mohsen
Mohsen am 18 Jun. 2013
I think that the function poly2mask is in charge of these discrepancies. Any idea why? Here is the entire code:
iNNX=double(iNX);
iNNY=double(iNY);
for i=1:iNZ;
iPointsinSlice=1;
for j=1:iNCUr;
if UrContourZ(j)==ZSlice(i);
iPointsinSlice = iPointsinSlice+1;
UrPointX(iPointsinSlice-1)=1 + (UrContourX(j)-Offset(1,1));
UrPointY(iPointsinSlice-1)=1 + (UrContourY(j)-Offset(2,1));
end
end
if iPointsinSlice>0;
indx=round(iPointsinSlice);
indy=round(iPointsinSlice);
indx(1:iPointsinSlice-1)=UrPointX(1:iPointsinSlice-1)/DresX;
indy(1:iPointsinSlice-1)=UrPointY(1:iPointsinSlice-1)/DresY;
SliceMaskUr = poly2mask(indx,indy,iNNX,iNNY);
for m=1:iNX;
for l=1:iNY;
if SliceMaskUr(m,l)==1;
DoseCubeU(m+(l-1)*iNX+(i-1)*iNY*iNX)=100*SumDose(m,l,i)/RX_Dose;
end
end
end
end
end
Your help is much appreciated! :)
Mohsen
Mohsen am 18 Jun. 2013
I changed
DoseCubeU(m+(l-1)*iNX+i*iNY*iNX)=100*SumDose(m,l,i)/RX_Dose;
to
DoseCubeU(double(m)+double((l-1))*double(iNX)+double((i-1))*double(iNY)*double(iNX))=100*SumDose(m,l,i)/RX_Dose;
Otherwise the indexing will not be correct. For example, iNX*iNY*iNZ (which is 120*120*11) becomes equal to 65535 (which is wrong). We should write it as double(iNX)*double(iNY)*double(iNZ) in order to get the correct results (ie. 158400).
By making this change, both the indexing (the initial) method and the subscription method (below) give the same results. But these results are different than any of the other proposed methods.
So, how can I optimize:
for i=1:iNZ;
if iPointsinSlice>0;
for m=1:iNX;
for l=1:iNY;
if SliceMaskUr(m,l)==1;
DoseCubeU(m,l,i)=100*SumDose(m,l,i)/RX_Dose;
end
end
end
end
end

Andrei Bobrov
Andrei Bobrov am 18 Jun. 2013
Bearbeitet: Andrei Bobrov am 19 Jun. 2013
DoseCubeU = bsxfun(@times,100*SumDose/RX,SliceMaskUr==1);
ADD
s = SliceMaskUr(end:-1:1,end:-1:1);
tt = cumsum(cumsum(s),2);
t1 = flipud(any(tt,2));
t2 = fliplr(any(tt));
DoseCubeU = bsxfun(@times,100*SumDose(t1,t2,:)/RX_Dose,SliceMaskUr(t1,t2));
  4 Kommentare
Mohsen
Mohsen am 18 Jun. 2013
I changed
DoseCubeU(m+(l-1)*iNX+i*iNY*iNX)=100*SumDose(m,l,i)/RX_Dose;
to
DoseCubeU(double(m)+double((l-1))*double(iNX)+double((i-1))*double(iNY)*double(iNX))=100*SumDose(m,l,i)/RX_Dose;
Otherwise the indexing will not be correct. For example, iNX*iNY*iNZ (which is 120*120*11) becomes equal to 65535 (which is wrong). We should write it as double(iNX)*double(iNY)*double(iNZ) in order to get the correct results (ie. 158400).
By making this change, both the indexing (the initial) method and the subscription method (below) give the same results. But these results are different than any of the other proposed methods.
So, how can I optimize:
for i=1:iNZ;
if iPointsinSlice>0;
for m=1:iNX;
for l=1:iNY;
if SliceMaskUr(m,l)==1;
DoseCubeU(m,l,i)=100*SumDose(m,l,i)/RX_Dose;
end
end
end
end
end
Andrei Bobrov
Andrei Bobrov am 19 Jun. 2013
Corrected. See ADD part in my answer.

Iain
Iain am 18 Jun. 2013
Try:
DoseCubeU(NY,NX,NZ) = 0; % or any suitable initialisation
if iPointsinSlice>0;
DoseCubeU(SliceMaskUr(m,l)==1,:) = 100*SumDose(SliceMaskUr(m,l)==1,:);
end
  2 Kommentare
Mohsen
Mohsen am 18 Jun. 2013
This gives me a different answer than all the other four methods!
Mohsen
Mohsen am 18 Jun. 2013
I changed
DoseCubeU(m+(l-1)*iNX+i*iNY*iNX)=100*SumDose(m,l,i)/RX_Dose;
to
DoseCubeU(double(m)+double((l-1))*double(iNX)+double((i-1))*double(iNY)*double(iNX))=100*SumDose(m,l,i)/RX_Dose;
Otherwise the indexing will not be correct. For example, iNX*iNY*iNZ (which is 120*120*11) becomes equal to 65535 (which is wrong). We should write it as double(iNX)*double(iNY)*double(iNZ) in order to get the correct results (ie. 158400).
By making this change, both the indexing (the initial) method and the subscription method (below) give the same results. But these results are different than any of the other proposed methods.
So, how can I optimize:
for i=1:iNZ;
if iPointsinSlice>0;
for m=1:iNX;
for l=1:iNY;
if SliceMaskUr(m,l)==1;
DoseCubeU(m,l,i)=100*SumDose(m,l,i)/RX_Dose;
end
end
end
end
end

Diese Frage ist geschlossen.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by