The system has two equilibrium points ( and ). It is possible to evaluate the system's stability through a graphical method. From the vector field, we can observe how the system's state will evolve near these equilibrium points.
[T, X] = meshgrid(-0:5/15:5, 0:3/21:3);
S = - (X - 1).*(X - 2).^2;
L = sqrt(1 + S.^2);
U = 1./L;
V = S./L;
quiver(T, X, U, V, 0.5)
axis tight
xlabel('t'), ylabel('x(t)')
For , it takes an eternity to converge to the equilibrium. For , the trajectory converges in finite time.
Da Änderungen an der Seite vorgenommen wurden, kann diese Aktion nicht abgeschlossen werden. Laden Sie die Seite neu, um sie im aktualisierten Zustand anzuzeigen.
Translated by
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.