After training my DDPG RL agent and saving it, unexpected simulation output
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Abdul Basith Ashraf
am 3 Apr. 2021
Kommentiert: Rik
am 5 Apr. 2021
After training my DDPG RL agent and saving it, it does not produce the expected result.
After training, first I ran the simulink model, I got the wrong kind of output. Then I loaded the saved mat file and ran
sim(env,saved_agent,simOpts)
The output (was a flat profile) which was simply different from what it was during training.
These are the agent options
agentOptions = rlDDPGAgentOptions(...
'TargetSmoothFactor',1e-3,...
'ExperienceBufferLength',1e3,...
'SampleTime',0.1,...
'DiscountFactor',0.99,...
'MiniBatchSize',64,...
"NumStepsToLookAhead",10,...
"SaveExperienceBufferWithAgent",true, ...
"ResetExperienceBufferBeforeTraining",false);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;
And these are my training options
maxepisodes = 1000;
maxsteps = 1000;
trainingOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',maxsteps,...
'Verbose',false,...
'Plots','training-progress',...
"ScoreAveragingWindowLength",50,...
'StopTrainingValue',1000,...
'SaveAgentCriteria',"EpisodeReward", ...
"SaveAgentValue",-1e2);
I want the output to be from the learned agent and it cannot be flat at all
EDIT
When I check inside my agent, it only has two properties
>>agent
agent =
rlDDPGAgent with properties:
AgentOptions: [1×1 rl.option.rlDDPGAgentOptions]
ExperienceBuffer: [1×1 rl.util.ExperienceBuffer]
2 Kommentare
Emmanouil Tzorakoleftherakis
am 5 Apr. 2021
How many episodes did you train for? Simulation results are never going to be exactly the same as what you were seeing in training for a few reasons, including that during training there is added exploration. I would make sure that the output you are seeing during training is not purely due to exploration noise, i.e., make sure that your actor network is set up so that the deterministic output is not flat
Rik
am 5 Apr. 2021
If this question is unclear, why did you mark an answer as accepted answer? You can simply post a comment with clarifications, or even edit your question to clarify it.
Akzeptierte Antwort
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!