solution of ordinary differential equations when there is a f(t)
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
HONG CHENG
am 5 Mär. 2021
Kommentiert: Walter Roberson
am 5 Mär. 2021
I do hope anyone can give me some idea to solve these two problems shown in two boxs
I can calculte the the solution of x(t) in the following equation
dx(t)/dt = x(t)+(x(t))^3
I can use
dsolve('Dx=1*x+1*x^3')
and I got the answer is
ans =
0
(-exp(2*C8 + 2*t)/(exp(2*C8 + 2*t) - 1))^(1/2)
1i
-1i
I don't know what's C8 and should I just take the (-exp(2*C8 + 2*t)/(exp(2*C8 + 2*t) - 1))^(1/2) as the correct solution?
More important, I don't know how to calculte the solution of x(t) when there is a f(t)
dx(t)/dt = x(t)+(x(t))^3 + f(t)
, where
f(t) = sin(100*t)
1 Kommentar
Walter Roberson
am 5 Mär. 2021
I cannot read some of the details of f(t) for the second equation.
Maple and Mathematica both say that there is no closed form solution for the first equation, and no closed form solution for diff(x(t), t) == x(t) + cos(t)^8 + x(t)^3 + 2*sin(5*t)*exp(t) + 1 (which is the best I could estimate for the second equation.)
Akzeptierte Antwort
Walter Roberson
am 5 Mär. 2021
I don't know what's C8 and should I just take the (-exp(2*C8 + 2*t)/(exp(2*C8 + 2*t) - 1))^(1/2) as the correct solution?
Yes? No?
C8 represents a constant needed to represent a boundary condition.
syms x(t) x0
dx = diff(x)
eqn = dx == x(t)+(x(t))^3
X = simplify(dsolve(eqn, x(0)==x0)) %boundary condition on x(0)
subs(X,t,0) %crosscheck
Oh dear, that loses the sign. What happens if x0 was negative?
Xneg = dsolve(eqn, x(0)==-2)
Xpos = simplify(dsolve(eqn, x(0)==2))
fplot(Xpos, [0 1])
The larger the boundary condition, the smaller the distance until the singularity. For small enough boundary conditions, the distance to the singularity is approximately -log(sqrt(x0)) -- for boundary conditions of the form 1/N for large enough N, that would be very close to log(sqrt(N))
5 Kommentare
Walter Roberson
am 5 Mär. 2021
No, odeFunction() and dsolve() are completely useless for difference equations.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Equation Solving finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!