lsqnonlin and true parameters value
    4 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Malgorzata Wieteska
 am 4 Mär. 2021
  
    
    
    
    
    Kommentiert: Malgorzata Wieteska
 am 4 Mär. 2021
            Hi,
I'm trying to calculate true values of parameters and get an information about how good the found parameters are. For this I want to use lsqnonlin, while finding the parameters in my ODE. I wonder how to get: 
a) least-squares optimal estimate of the parameter values;
b) Chi squared error;
c) asymptotic standard error of the parameters;
d) asymptotic standard error of the result of the simulation;
e) correlation matrix of the parameters;
f) convergence history;
g) R-squared coeeficient of multiple determination;
while using lsqnonlin. Any suggestions will be appreciated. Thanks in advance, Malgosia
0 Kommentare
Akzeptierte Antwort
  Alan Weiss
    
      
 am 4 Mär. 2021
        I can help you with a) and f), but for the rest you will have to look elsewhere.
The examples Fit ODE, Problem-Based and Fit an Ordinary Differential Equation (ODE) show two ways of finding a fit to an ODE" problem-based or solver-based. To look at the convergence history, set the Display option to 'iter' before you call solve in the first example or lsqcurvefit in the second:
opts = optimoptions('lsqnonlin','Display','iter');
[rsol,sumsq] = solve(prob,r0,'Options',opts) % first case
% or
opts = optimoptions('lsqcurvefit','Display','iter');
[xbest,resnorm,residual] = lsqcurvefit(@fitlorenzfn,x0,tspan,a,lb,ub,opts);
The values in rsol or xbest are tthe least-squares parameter values. sumsq or resnorm are the resulting sum of squared residuals.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Get Started with Optimization Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

