how to solve non linear differential equations
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
dx(t)/dt=y(t)
dy(t)/dt=-(1/r+g+a+b|x(t)|)y(t)/c-x(t)/(lc)
t=-0.05:0.01:0.05
r = 1430;
a = -0.0683;
b = 0.0676;
c = 36*10^-9;
g = -0.0676;
l=27
i want to plot phase portrait of (x(t),y(t)) and plots for (t,x(t)),(t,y(t))
0 Kommentare
Antworten (1)
Bjorn Gustavsson
am 3 Mär. 2021
Bearbeitet: Bjorn Gustavsson
am 4 Mär. 2021
Have a look at the help and documentation of ode45 and the numerous ode-examples.
In brief to solve this ODE-system write a matlab-function for the derivatives:
function dxdtdydt = your_ode(t,xy,pars)
r = pars(1);
a = pars(2);
b = pars(3);
c = pars(4);
g = pars(5);
l = pars(6);
y = xy(2);
x = xy(1);
dxdt = xy(2);
dydt = -(1/r+g+a+b*abs(x)*y/c-x/(l*c));
dxdtdydt = [dxdt;
dydt];
That ode you then integrate from some initial state over some time-period of interest
r = 1430;
a = -0.0683;
b = 0.0676;
c = 36*10^-9;
g = -0.0676;
l=27;
pars = [r,a,b,c,g,l];
t = -0.05:0.01:0.05;
x0y0 = [0,1]; % I wouldn't know.
[t,xy] = ode45(@(t,xy) your_ode(t,xy,pars),t,x0y0);
HTH
13 Kommentare
Bjorn Gustavsson
am 5 Mär. 2021
Well the solution does not look like a sine-wave. That is because I have yet another typo in the ODE, you will surely find it if you look close and read the code, and think about what you need to obtain an oscillating solution.
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!