Fast matrix multiplication with diagonal matrices
22 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Samuel L. Polk
am 24 Feb. 2021
Kommentiert: z cy
am 28 Jul. 2022
Let Wbe a large, sparse matrix. Let
and
be diagonal matrices of the same size. I would like to calculate
. However, these matrices are large enough that matrix multiplication is very expensive. I would like to speed up the calculation of L.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530579/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530584/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530589/image.png)
I know that computing L can be sped up by utilizing the fact that
and
are diagonal. For example, I know that I can compute
as follows.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530594/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530599/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530604/image.png)
diagD1 = diag(D1); % diagonal of the matrix D1.
D1W = W.*diadD1; % Equivalent to multiplying the ith row of W by D(i,i). Yields D1*W.
My question is whether there is a similar exploitation of the diagonality of
that will allow me to avoid matrix multiplication to compute L.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/530609/image.png)
Thank you.
Akzeptierte Antwort
James Tursa
am 25 Feb. 2021
Bearbeitet: James Tursa
am 25 Feb. 2021
Here is a mex routine to do this calculation. It relies on inputting the diagonal matrices as full vectors of the diagonal elements. It does not check for underflow to 0 for the calculations. A robust production version of this code would check for this and clean the sparse result of 0 entries, but I did not include that code here. It also does not check for inf or NaN entries. This could be made faster with parallel code such as OpenMP, but I didn't do that either.
/* File: spdmd.c */
/* Compile: mex spdmd.c */
/* Syntax C = spdmd(D1,M,D2) */
/* Does C = D1 * M * D2 */
/* where M = double real sparse NxN matrix */
/* D1 = double real N element full vector representing diagonal NxN matrix */
/* D2 = double real N element full vector representing diagonal NxN matrix */
/* C = double real sparse NxN matrix */
/* Programmer: James Tursa */
/* Date: 2/24/2021 */
/* Includes ----------------------------------------------------------- */
#include "mex.h"
#include <string.h>
/* Gateway ------------------------------------------------------------ */
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
mwSize m, n, j, nrow;
double *Mpr, *D1pr, *D2pr, *Cpr;
mwIndex *Mir, *Mjc, *Cir, *Cjc;
/* Argument checks */
if( nlhs > 1 ) {
mexErrMsgTxt("Too many outputs");
}
if( nrhs != 3 ) {
mexErrMsgTxt("Need exactly three inputs");
}
if (!mxIsDouble(prhs[1]) || !mxIsSparse(prhs[1]) || mxIsComplex(prhs[1])) {
mexErrMsgTxt("2nd argument must be real double sparse matrix");
}
if( !mxIsDouble(prhs[0]) || mxIsSparse(prhs[0]) || mxIsComplex(prhs[0]) ||
mxGetNumberOfDimensions(prhs[0]) != 2 || (mxGetM(prhs[0]) != 1 && mxGetN(prhs[0]) != 1)) {
mexErrMsgTxt("1st argument must be real double full vector");
}
if (!mxIsDouble(prhs[2]) || mxIsSparse(prhs[2]) || mxIsComplex(prhs[2]) ||
mxGetNumberOfDimensions(prhs[2]) != 2 || (mxGetM(prhs[2]) != 1 && mxGetN(prhs[2]) != 1)) {
mexErrMsgTxt("3rd argument must be real double full vector");
}
m = mxGetM(prhs[1]);
n = mxGetN(prhs[1]);
if (m != n || mxGetNumberOfElements(prhs[0]) != n || mxGetNumberOfElements(prhs[2]) != n) {
mexErrMsgTxt("Matrix dimensions must agree.");
}
/* Sparse info */
Mir = mxGetIr(prhs[1]);
Mjc = mxGetJc(prhs[1]);
/* Create output */
plhs[0] = mxCreateSparse( m, n, Mjc[n], mxREAL);
/* Get data pointers */
Mpr = (double *) mxGetData(prhs[1]);
D1pr = (double *) mxGetData(prhs[0]);
D2pr = (double *) mxGetData(prhs[2]);
Cpr = (double *) mxGetData(plhs[0]);
Cir = mxGetIr(plhs[0]);
Cjc = mxGetJc(plhs[0]);
/* Fill in sparse indexing */
memcpy(Cjc, Mjc, (n+1) * sizeof(mwIndex));
memcpy(Cir, Mir, Cjc[n] * sizeof(mwIndex));
/* Calculate result */
for( j=0; j<n; j++ ) {
nrow = Mjc[j+1] - Mjc[j]; /* Number of row elements for this column */
while( nrow-- ) {
*Cpr++ = *Mpr++ * (D2pr[j] * D1pr[*Cir++]);
}
}
}
3 Kommentare
James Tursa
am 25 Feb. 2021
Bearbeitet: James Tursa
am 25 Feb. 2021
Fixed the include. Thanks. The speed gain, if any, will depend greatly on the actual sizes and sparsity involved.
z cy
am 28 Jul. 2022
Hi, I have a question, can you help me to solve it? Thanks!https://ww2.mathworks.cn/matlabcentral/answers/1769470-how-to-reduce-running-time-of-diagonal-matrix-multiplication-with-full-matrix-in-matlab
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!