nonlinear and linear regression

5 Ansichten (letzte 30 Tage)
Mhmmd Sjj
Mhmmd Sjj am 15 Feb. 2021
Beantwortet: William Rose am 30 Mär. 2021
I have created a script plus a function to use for nonlinear least square optimization. I have compared it with linear regression and also with built-in functions in MATLAB such as fminsearch,fminunc, lsqnonlin. The results for all regression models are surprisingly the same and I don't know why. Can anyone help me with that please?Here is my function:
function result = NonLsq(w,x,y)
ei = -(w(1).*x+w(2))+y;
result = sum(ei.^2);
end
And the following is my main script:
clc; clear; close all;
% { Linear And Nonlinear Curvefitting}
%% 1. One Dimensional data
x = [0.5 1 2 3 4];
y = [10.4 5.8 3.3 2.4 2];
xMin = min(x);
xMax = max(x);
n = 100; % Number of data which sould be interpolated
xInterp = linspace(xMin,xMax,n);
yInterp1 = interp1(x,y,xInterp);
yInterp2 = interp1(x,y,xInterp,'spline');
%% 2. NonLinear Least Square
% Initial Guess
g = @(w,x,y) (w(1).*x+w(2))-y;
X01 = [0.15 0.55];
X02 = [0.4 0.8];
X03 = [0.7 48];
% X0 = [0.15 0.55]';
Options1 = optimset('Display','Iter','TolX',1e-5);
Options2 = optimset('Display','on');
Options3 = optimset('MaxIter',50,'TolFun',1e-4);
p1_Nonlin = fminsearch(@NonLsq,X01,Options1,x,y);
p2_Nonlin = fminunc(@NonLsq,X02,Options2,x,y);
p3_Nonlin = lsqnonlin(g,X03,[],[],Options3,x,y);
plot(x,y,'o','MarkerSize',8,'LineWidth',3,'MarkerFaceColor','k');
hold on
grid on
plot(xInterp,yInterp1,'r--','LineWidth',2)
hold on
plot(xInterp,yInterp2,'b:','LineWidth',2)
legend('Spline INterpolated')
hold on
plot(xInterp,pLinear_Interp,'k*','LineWidth',2)
plot(xInterp,P1_Nonlin_Interp,'c.','LineWidth',2,'MarkerSize',12)
hold on
plot(xInterp,P2_Nonlin_Interp,'m','LineWidth',2)
hold on
plot(xInterp,P3_Nonlin_Interp,'g','LiNEwidth',2)
legend('Original Data','Linear Interpolatn','Linear Spline','Linear Regression'...
,'FminSearch','FminUnc','LsqNonLinear')
Could it be related to the function I'm trying to optimize?

Akzeptierte Antwort

William Rose
William Rose am 30 Mär. 2021
You get the same results because your model g() is linear in w(1) and w(2):
g = @(w,x,y) (w(1).*x+w(2))-y;
The error function NonLsq() for the noninear case uses the same linear model. Thus linear and nonlinear fits find the same solution.
By the way, you do not need the dot-multiply in ei=-(w(1).*x+w(2))+y. Since w(1) is a scalar, you can do ei=-(w(1)*x+w(2))+y. The same is true for the deifnition of g().

Weitere Antworten (0)

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by