How to solve Multiple DOF Mass Spring Damper system and find/plot acceleration, velocity & displacement vs time

67 Ansichten (letzte 30 Tage)
I know to solve 1 DOF system but i dont know to solve multiple DOF (Matrix will come instead of single value);
Also how to find acceleration?
I am getting absurd/wrong values. Kindly correct the code
Function Code :-
% ODE Function
function dxdt = Ransom(t, x, M, K, C)
m1 = 25.81;m2 = 15.36; m3 = 40.35; m4 = 10.12;
c1 = 3564; c2 = 5685; c3 = 8550; c4 = 620;
k1 = 950000; k2 = 262800; k3 = 213000; k4 = 450000;
w = 50; F = 5;
M = [m1 0 0 0; 0 m2 0 0; 0 0 m3 0; 0 0 0 m4];
C = [c1+c2 -c2 0 0; -c2 c2+c3 -c3 0; 0 -c3 c3+c4 -c4; 0 0 -c4 c4];
K = [k1+k2 -k2 0 0; -k2 k2+k3 -k3 0; 0 -k3 k3+k4 -k4; 0 0 -k4 k4];
dxdt = zeros(8, 1) ;
dxdt(1) = x(5) ;
dxdt(2) = x(6) ;
dxdt(3) = x(7) ;
dxdt(4) = x(8) ;
dxdt(5) = 5*sin(w*t) -K(1)/M(1) * x(1) - K(2)/M(1) * x(2) -C(1)/M(1) * x(5) - C(2)/M(1) * x(6) ;
dxdt(6) = -K(5)/M(6) * x(1) - K(6)/M(6) * x(2) - K(7)/M(6) * x(3) -C(5)/M(6) * x(5) - C(6)/M(6) * x(6) - C(7)/M(6) * x(7) ;
dxdt(7) = -K(10)/M(11) * x(1) - K(11)/M(11) * x(2) - K(12)/M(11) * x(3) -C(10)/M(11) * x(5) - C(11)/M(11) * x(6) - C(12)/M(11) * x(7) ;
dxdt(8) = -K(15)/M(16) * x(3) - K(16)/M(16) * x(4) -C(15)/M(16) * x(7) - C(16)/M(16) * x(8) ;
end
Calling Code: -
clear all;clc;
m1 = 25.81;m2 = 15.36; m3 = 40.35; m4 = 10.12;
c1 = 3564; c2 = 5685; c3 = 8550; c4 = 620;
k1 = 950000; k2 = 262800; k3 = 213000; k4 = 450000;
w = 50; F = 5;
M = [m1 0 0 0; 0 m2 0 0; 0 0 m3 0; 0 0 0 m4];
C = [c1+c2 -c2 0 0; -c2 c2+c3 -c3 0; 0 -c3 c3+c4 -c4; 0 0 -c4 c4];
K = [k1+k2 -k2 0 0; -k2 k2+k3 -k3 0; 0 -k3 k3+k4 -k4; 0 0 -k4 k4];
tspan = [0 1000] ;
y0 = [0 0 0 0 0 0 0 0] ;
[t,x]=ode45('Ransom',tspan,y0);
x_ = x(:, 1:4) ;
xdot_ = x(:, 5:8) ;
subplot(2,1,1)
plot(t, x_);
subplot(2,1,2)
plot(t, xdot_);

Akzeptierte Antwort

AJMIT KUMAR
AJMIT KUMAR am 25 Jan. 2021
Finally I did it myself
Function Code: -
% ODE Function
function dxdt = Ransom(t,x)
m1 = 25.81; m2 = 15.36; m3 = 40.35; m4 = 10.12; % Mass(kg)
c1 = 3564; c2 = 5685; c3 = 8550; c4 = 620; % Damping Coefficient
k1 = 950000; k2 = 262800; k3 = 213000; k4 = 450000; % Stiffness
w = 100; % Angular Velocity (rad/s)
F = 5;
M = [m1 0 0 0; 0 m2 0 0; 0 0 m3 0; 0 0 0 m4];
C = [c1+c2 -c2 0 0; -c2 c2+c3 -c3 0; 0 -c3 c3+c4 -c4; 0 0 -c4 c4];
K = [k1+k2 -k2 0 0; -k2 k2+k3 -k3 0; 0 -k3 k3+k4 -k4; 0 0 -k4 k4];
dxdt = zeros(8,1) ;
% x(1),x(2),x(3)and x(4) are displacement of mass m1, m2, m3 & m4 respectively
dxdt(1) = x(5) ; % velocity of mass m1
dxdt(2) = x(6) ; % velocity of mass m2
dxdt(3) = x(7) ; % velocity of mass m3
dxdt(4) = x(8) ; % velocity of mass m4
dxdt(5) = (F*sin(w*t))/M(1) -K(1)/M(1) * x(1) - K(2)/M(1) * x(2) -C(1)/M(1) * x(5) - C(2)/M(1) * x(6) ;
dxdt(6) = -K(5)/M(6) * x(1) - K(6)/M(6) * x(2) - K(7)/M(6) * x(3) -C(5)/M(6) * x(5) - C(6)/M(6) * x(6) - C(7)/M(6) * x(7) ;
dxdt(7) = -K(10)/M(11) * x(2) - K(11)/M(11) * x(3) - K(12)/M(11) * x(4) -C(10)/M(11) * x(6) - C(11)/M(11) * x(7) - C(12)/M(11) * x(8) ;
dxdt(8) = -K(15)/M(16) * x(3) - K(16)/M(16) * x(4) -C(15)/M(16) * x(7) - C(16)/M(16) * x(8) ;
end
Calling Code: -
clear all;clc;
% Displacement and Velocity Calculation
tspan = [0 1]; % Time (sec)
y0 = [1 1 1 1 0 0 0 0]; % Initial conditions
[t,x]=ode45('Ransom',tspan,y0);
x_ = x(:,1:4); % All Displacement
xdot_ = x(:,5:8); % All Velocity
% Plot Displacement wrt Time
subplot(3,1,1)
plot(t, x_ ,'color','b','LineWidth',2);
grid on
xlabel('Time (sec)')
ylabel('Displacement(m)')
title('Displacement Vs Time')
% Plot Velocity wrt Time
subplot(3,1,2)
plot(t, xdot_ ,'color','g','LineWidth',2);
grid on
xlabel('Time (sec)')
ylabel('Velocity (m/s)')
title('Velocity Vs Time')
% Acceleration Calculation
m1 = 25.81; m2 = 15.36; m3 = 40.35; m4 = 10.12; % Mass(kg)
c1 = 3564; c2 = 5685; c3 = 8550; c4 = 620; % Damping Coefficient
k1 = 950000; k2 = 262800; k3 = 213000; k4 = 450000; % Stiffness
w = 100; % Angular Velocity (rad/s)
F = 5;
M = [m1 0 0 0; 0 m2 0 0; 0 0 m3 0; 0 0 0 m4];
C = [c1+c2 -c2 0 0; -c2 c2+c3 -c3 0; 0 -c3 c3+c4 -c4; 0 0 -c4 c4];
K = [k1+k2 -k2 0 0; -k2 k2+k3 -k3 0; 0 -k3 k3+k4 -k4; 0 0 -k4 k4];
a1 = (F*sin(w*t))/M(1) -K(1)/M(1) * x(:,1) - K(2)/M(1) * x(:,2) -C(1)/M(1) * x(:,5) - C(2)/M(1) * x(:,6) ;
a2 = -K(5)/M(6) * x(:,1) - K(6)/M(6) * x(:,2) - K(7)/M(6) * x(:,3) -C(5)/M(6) * x(:,5) - C(6)/M(6) * x(:,6) - C(7)/M(6) * x(:,7) ;
a3 = -K(10)/M(11) * x(:,2) - K(11)/M(11) * x(:,3) - K(12)/M(11) * x(:,4) -C(10)/M(11) * x(:,6) - C(11)/M(11) * x(:,7) - C(12)/M(11) * x(:,8) ;
a4 = -K(15)/M(16) * x(:,3) - K(16)/M(16) * x(:,4) -C(15)/M(16) * x(:,7) - C(16)/M(16) * x(:,8) ;
a = [a1 a2 a3 a4];
% Plot Acceleration wrt Time
subplot(3,1,3)
plot(t, a ,'color','r','LineWidth',2);
grid on
xlabel('Time (sec)')
ylabel('Acceleration (m/s^2)')
title('Acceleration Vs Time')

Weitere Antworten (1)

Stephan
Stephan am 24 Jan. 2021
tspan=[0 10]; % Simulation time
z0=[0;0]; % Initial conditions for forced vibration
[t,z]=ode45(@forced_vibration,tspan,z0);
subplot(2,1,1)
plot(t,z(:,1),'color','b','LineWidth',2);
grid on
xlabel('Time (t) (sec)')
ylabel('Displacement (x) (m)')
title('Displacement Vs Time (Forced Vibration)')
subplot(2,1,2)
plot(t,z(:,2),'color','b','LineWidth',2);
grid on
xlabel('Time (t) (sec)')
ylabel('Velocity (xdot) (m/s)')
title('Velocity Vs Time (Forced Vibration)')
function f = forced_vibration(t,z)
m = 10; % Mass(kg)
c = 10; % Damping coefficient (Ns/m)
k = 1000; % Stiffness coefficient (N/m)
F = 1; % Force (N)
w = 50; % Excitation frequency(rad/s)
f = [z(2);((F/m)*sin(w*t)-(c/m)*z(2)-(k/m)*z(1))];
end
  2 Kommentare
AJMIT KUMAR
AJMIT KUMAR am 24 Jan. 2021
Bearbeitet: AJMIT KUMAR am 24 Jan. 2021
@Stephan Beg your pardon I didnt provide the value/data for Multiple DOF, now provided, kindly solve for Multiple DOF, the example i have given is for single DOF that I know

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Acoustics, Noise and Vibration finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by