Filtering high frequencies from response signal
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Joe Bennet
am 20 Jan. 2021
Kommentiert: Star Strider
am 21 Jan. 2021

clc, clear, close all;
load('7004x4.mat')
t= g{:,1};
sm= g{:,3};
sm= rmmissing(sm);
t=rmmissing(t);
n=10;
t = arrayfun(@(i) mean(t(i:i+n-1)),1:n:length(t)-n+1)';
sm= arrayfun(@(i) mean(sm(i:i+n-1)),1:n:length(sm)-n+1)';
plot(t,sm)
xlabel('Time Elapsed (s)')
ylabel('Strain')
title('Strain Signal')
fs= 6.2e-4;
0 Kommentare
Akzeptierte Antwort
Star Strider
am 20 Jan. 2021
Try this:
D1 = load('7004x4.mat');
T1 = D1.g;
Q1 = T1(1:5,:);
t = T1{:,1};
sm = T1{:,3};
t = rmmissing(t);
sm = rmmissing(sm);
% Signal Vector
L = size(sm,1); % Data Length
Fs = 1/mean(diff(t)); % Sampling Frequency
Ts = 1/Fs; % Sampling Interval
Fn = Fs/2; % Nyquist Frequency
smc = sm - mean(sm); % Subtract Mean (Makes Other Peaks More Prominent)
FTsm = fft(smc)/L; % Normalised Fourier Transform
Fv = linspace(0, 1, fix(L/2)+1)*Fn; % Frequency Vector
Iv = 1:numel(Fv); % Index Vector (One-Sided Fourier Transform)
figure
plot(Fv, abs(FTsm(Iv))*2)
grid
xlim([0 50])
title('Fourier Transform')
xlabel('Frequency (Hz)')
ylabel('Amplitude')
Wp = [30]/Fn; % Passband Frequency (Normalised)
Ws = [1.01].*Wp; % Stopband Frequency (Normalised)
Rp = 1; % Passband Ripple
Rs = 60; % Passband Ripple (Attenuation)
[n,Wp] = ellipord(Wp,Ws,Rp,Rs); % Elliptic Order Calculation
[z,p,k] = ellip(n,Rp,Rs,Wp); % Elliptic Filter Design: Zero-Pole-Gain
[sos,g] = zp2sos(z,p,k); % Second-Order Section For Stability
figure
freqz(sos, 2^20, Fs) % Filter Bode Plot
set(subplot(2,1,1), 'XLim',Wp*Fn.*[0.8 1.2]) % Optional
set(subplot(2,1,2), 'XLim',Wp*Fn.*[0.8 1.2]) % Optional
sm_filtered = filtfilt(sos, g, sm); % Filter With IIR Filter
figure
plot(t, sm)
hold on
plot(t, sm_filtered)
hold off
grid
xlabel('Time (Units Estimated)')
ylabel('AMplitude (Units Not Specified)')
legend('Original Signal', 'Lowpass-Filtered Signal', 'Location','SE')
Adjust the value of ‘Wp’ (Passband Frequency) of the filter to get the result you want. The Fourier transform plot can help with that decision.
5 Kommentare
Star Strider
am 21 Jan. 2021
My pleasure!
If my Answer helped you solve your problem, please Accept it!
.
Weitere Antworten (1)
Mathieu NOE
am 20 Jan. 2021
hello
try also sgolayfilt
function y=sgolayfilt(x,order,framelen,weights,dim)
%SGOLAYFILT Savitzky-Golay Filtering.
% SGOLAYFILT(X,ORDER,FRAMELEN) smooths the signal X using a
% Savitzky-Golay (polynomial) smoothing filter. The polynomial order,
% ORDER, must be less than the frame length, FRAMELEN, and FRAMELEN must
% be odd. The length of the input X must be >= FRAMELEN. If X is a
% matrix, the filtering is done on the columns of X.
0 Kommentare
Siehe auch
Kategorien
Find more on Digital Filter Analysis in Help Center and File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!