Hand gesture recognition using Deep learning

6 Ansichten (letzte 30 Tage)
Shweta Saboo
Shweta Saboo am 13 Jan. 2021
Kommentiert: Shweta Saboo am 1 Feb. 2021
I have extracted feature matrix for hand gestures. How can recognition be done using Deep learning with input as the feature matrix?

Antworten (3)

Raynier Suresh
Raynier Suresh am 18 Jan. 2021
If you have a data set of numeric features, then you can train a deep learning network using a feature input layer. The below code is a simple example on how to use the feature input layer.
XTrain = [0 0;0 1;1 0;1 1]; % Input Features (Number of Observations x Number of Features)
YTrain = categorical({'Action1';'Action2';'Action2';'Action3'}); % Output Labels for each observation
numClasses = numel(categories(YTrain));
numFeatures = size(XTrain,2);
layers = [
featureInputLayer(numFeatures)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]; % Define the Layers
options = trainingOptions('sgdm');
net = trainNetwork(XTrain,YTrain,layers,options); % Train the network
classify(net,[0 1])
Refer the below link for more information:
  3 Kommentare
Raynier Suresh
Raynier Suresh am 24 Jan. 2021
Which MATLAB Release are you using ?
Shweta Saboo
Shweta Saboo am 24 Jan. 2021
R2020a

Melden Sie sich an, um zu kommentieren.


Raynier Suresh
Raynier Suresh am 25 Jan. 2021
For a deep learning network every input image is considered as a matrix of numbers, So in place of an image you can also feed your feature matrix and train the network only things is the feature matrix must to reshaped to a proper size so that the imageInputLayer accepts it. The below code will give you an example
XTrain = [0 0;0 1;1 0;1 1]; % Input Features (Number of Observations x Number of Features)
XTrain = reshape(XTrain',[1 2 1 4]); % Reshape the XTrain (1 x Number of Features x 1 x Number of Observation)
YTrain = categorical({'Action1';'Action2';'Action2';'Action3'}); % Output Labels for each observation
options = trainingOptions('sgdm','MaxEpochs',150);
inputSize = [1 2 1]; % set the input size as (1 x Number of Features x 1)
outputSize = numel(categories(YTrain)); % Number of output categories
layers = [imageInputLayer(inputSize);fullyConnectedLayer(outputSize);softmaxLayer;classificationLayer];
net = trainNetwork(XTrain,YTrain,layers,options); % Train the network
classify(net,[1 1])
  2 Kommentare
Shweta Saboo
Shweta Saboo am 28 Jan. 2021
Thanks for the response. I am having 100 observations with 20 features for each observation . When I am trying to run the above code, following error is occuring:
"Error using DAGNetwork/calculatePredict>predictBatch (line 151)
Incorrect input size. The input images must have a size of [1 20 1]."
Please suggest.
Raynier Suresh
Raynier Suresh am 28 Jan. 2021
Check whether you have changed the input size of data you fed into the classify function. I have modified the same code for your input size.
XTrain = rand(100,20); % Input Features (Number of Observations x Number of Features)
XTrain = reshape(XTrain',[1 20 1 100]); % Reshape the XTrain (1 x Number of Features x 1 x Number of Observation)
YTrain = categorical(randi(10,[1,100])'); % Output Labels for each observation
options = trainingOptions('sgdm','MaxEpochs',150);
inputSize = [1 20 1]; % set the input size as (1 x Number of Features x 1)
outputSize = numel(categories(YTrain)); % Number of output categories
layers = [imageInputLayer(inputSize);fullyConnectedLayer(outputSize);softmaxLayer;classificationLayer];
net = trainNetwork(XTrain,YTrain,layers,options); % Train the network
classify(net,rand(1,20))

Melden Sie sich an, um zu kommentieren.


Shweta Saboo
Shweta Saboo am 29 Jan. 2021
Thank you so much ,it worked.
  1 Kommentar
Shweta Saboo
Shweta Saboo am 1 Feb. 2021
After classification, I am trying to calculate the recognition accuracy , but in the above code test cases are not defined and hence recognition accuracy cannot be calculated.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by