solving a system of pdes using pdepe
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
So i have the follwing system of pdes:
where .
where .
The symmetry boundary conditions are:
The other two boundary conditions are given by:
At
and
.
Parameter values are: k1 = 5 ,k2 =6 , C=8.
So this is the function code:
function [c,f,s] = pdefun(x,t,u,dudx)
% Equation to solve
c = [1; 1];
if x <= 2
f = 5*dudx;
else
f = 6*dudx;
end
%k1 and k2.
end
% ---------------------------------------------
function u0 = pdeic(x) % Initial Conditions
u0 = [10; 0];
end
% ---------------------------------------------
function [pl,ql,pr,qr] = pdebc(xl,ul,xr,ur,t) % Boundary Conditions
pl = [0; 0];
ql = [0; 0];
pr = [e; f];
qr = [g; h];
end
% ---------------------------------------------
Then to solve the equation:
x = [0 0.1 0.2 0.3 0.4 0.45 0.475 0.5 0.525 0.55 0.6 0.7 0.8 0.9 0.95 0.975 0.99 1];
t = [0 0.001 0.005 0.01 0.05 0.1 0.5 1];
m = 2;
sol = pdepe(m,@pdefun,@pdeic,@pdebc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
To plot the solution:
surf(x,t,u1) %or u_{2}
title('u_1(x,t)')
xlabel('Distance x')
ylabel('Time t')
Just asking how do you write down the boundary conditions to make it suitable for pdepe as the examples provided on the matlab website don't help much with putting the boundary conditions in the standard form?
1 Kommentar
Bill Greene
am 23 Dez. 2020
I have written a short note that describes pdepe boundary conditions in more detail than the pdepe documentation.
You might find that helpful.
Antworten (0)
Siehe auch
Kategorien
Mehr zu PDE Solvers finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!