Efficient Method for Multiple Gridded Interpolation
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have scattered points of rain guage stations with random missing values. I also have NDVI values at these stations (complete records). The data is from January -Decemeber, 2016.
I want to interpolate both variables indepedently at daily time scale excluding any NaN stations for BOTH variables (i.e. exclude Nan from rainfall and corresponding NDVI). They will be saved as a Geotiff. This is my code for a single grid.
I want to do this in a loop with NaN excluded at each time step.
%%% load data
load data_now.dat
[lon,lat] = ndgrid(lon,lat);
lonobs = data_now(:,1);
latobs = data_now(:,2);
J= data_now(:,3);
G=data_now(:,4)
% lon and lat are read from a netcdf file
lon = ncread('important_gh.nc','lon');
lat = ncread('important_gh.nc','lat');
%Interpolate
Rainq = griddata(latobs,lonobs,J,lat,lon);
NDVIq = griddata(latobs,lonobs,G,lat,lon);
Thanks
0 Kommentare
Antworten (1)
Sindar
am 30 Nov. 2020
I don't know how fast it will be, but I think this'll work
% lon and lat are read from a netcdf file
lon = ncread('important_gh.nc','lon');
lat = ncread('important_gh.nc','lat');
[lon,lat] = ndgrid(dl.lon,dl.lat);
data_files = ...
for ind=1:length(data_files)
% load into a variable
data_now = load(data_files{ind});
lonobs = data_now(:,1);
latobs = data_now(:,2);
J= data_now(:,3);
G= data_now(:,4);
% find valid locations
idx = (~isnan(J)) & (~isnan(G));
%Interpolate, dropping nan locations
Rainq = griddata(latobs(idx),lonobs(idx),J(idx),lat,lon);
NDVIq = griddata(latobs(idx),lonobs(idx),G(idx),lat,lon);
% save
end
0 Kommentare
Siehe auch
Kategorien
Mehr zu NetCDF finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!