How to understand R of the regresion plot in neural network training?

1 Ansicht (letzte 30 Tage)
ANN structure is 3-3-4.The following is simple code input_train=[2,2,1,2,1,2,2,2,1,0.3,2,3.0,3.0,2,3.0; 16.6,14.6,15.79,14.6,13.4,14.6,14.6,14.6,13.4,14.6,12.6,13.4,15.8,14.6,13.4; 60,60,80,60,80,60,26.4,93.6,40.0,60,60,40.0,80,60,80]; output_train=[34.17,19.90,19.54,18.42,10.93,18.05,24.36,17.97,14.1,29.23,9.25,13.28,16.03,22.18,5.64; 14.27,16.85,13.680,17.46,15.03,15.68,23.45,13.64,16.84,4.86,29.94,24.90,15.17,13.24,33.78; 3.62,6.39,8.14,6.62,8.01,5.70,7.36,4.88,8.80,7.86,12.04,10.21,6.51,4.48,13.91; 4.88,3.35,2.67,3.22,1.64,2.83,4.98,2.45,2.38,1.42,2.77,3.31,2.43,2.94,1.91]; [inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train); net=newff(minmax(inputn),[3,4],{'tansig','logsig'},'traingdx'); net.trainParam.epochs=500; net.trainParam.goal=0.001; net.trainParam.max_fail=10; net=train(net,inputn,outputn); I can get the regression plot, ther is only one R. However,how can i get four correlation coefficient® of four objectives,respectivly?

Akzeptierte Antwort

ChristianW
ChristianW am 26 Feb. 2013
Bearbeitet: ChristianW am 26 Feb. 2013
y = sim(net,inputn);
r = regression(outputn,y); % r for every objective
R = regression(outputn(:)',y(:)'); % R from plot
or
r1_cc = corrcoef(outputn(1,:),y(1,:));
R_cc = corrcoef(outputn(:),y(:));
  3 Kommentare
ChristianW
ChristianW am 26 Feb. 2013
I'm sorry, used worng sim()-input, its inputn not input_train. I'll edit my answer.
Greg Heath
Greg Heath am 27 Feb. 2013
You should also be able to get it from
R = sqrt(1-MSE/mean(var(target',1))

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by