Grid to time and Grid to lon/lat conversion

6 Ansichten (letzte 30 Tage)
Tanziha Mahjabin
Tanziha Mahjabin am 20 Okt. 2020
Kommentiert: dpb am 21 Okt. 2020
Hi,
I have rotated the current grid and then plot. But the plot is giving on grid for both axis. How can I show (lat,lon) on y axis and time on x axis.
I tried to use datetick; but it's giving wrong date.
(As the grid is rotated; everything is calculated acordingly. Also because of grid rotation there should be lat and lon both on y axis.)
[NTR NIR]=size(UTR);
[NTR NIR]=meshgrid(1:NIR,1:NTR);
figure(4); clf; quiver(NIR,NTR,UTR,VTR,1,'k')
% set(gca,'xlim',[ min(TIMEw) max(TIMEw)])
datetick('x','mm/dd/yy','keeplimits','keepticks')
  1 Kommentar
Walter Roberson
Walter Roberson am 20 Okt. 2020
It is not clear that it makes sense to display a time axes in that plot. Your X and Y are NIR and NTR which go up to about 320 and 55 respectively. Is the 320 intended to be days? If so then for mm/dd/yy to be meaningful there would need to be a base date to start from.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Tanziha Mahjabin
Tanziha Mahjabin am 21 Okt. 2020
The full code was something like the following. I did rotate the grid and calculated al variables accordingly. Then the weekly average is done. I want to see the change of the current over time. So I need the time on x axis. The figure I uploaded before was showing 304 time steps.
% find a line orthogonal to the site-to-site baseline in its midpoint; then
% find the indexes of the radar grid points closest to this orthogonal line
% some useful tools
clear all; clc; close all
% addpath('~/Documents/Github/scosoli/tmp/acorn_wera_Radial_DM-mbp/Helpers/HFRadarmap4_1/');
path(path,'H:\Data\Radar_job\acorn_daily_averaging\')
fileIn='IMOS_aggregation_20200124T074252Z.nc';
time=ncread(fileIn, 'TIME');
reftime=ncreadatt(fileIn,'TIME','units'); reftime=reftime(12:end-4);
reftime=datenum(reftime,'yyyy-mm-dd HH:MM:SS');
time=time+reftime;
% [iw,jw] = ndgrid(iwk,1:size(sst,2));
U=single(ncread(fileIn, 'UCUR'));
V=single(ncread(fileIn, 'VCUR'));
Usd=single(ncread(fileIn, 'UCUR_sd'));
Vsd=single(ncread(fileIn, 'VCUR_sd'));
Uqc=single(ncread(fileIn, 'UCUR_quality_control'));
% Vqc=ncread(fileIn, 'VCUR_quality_control');
% get variable size and prefilter based on available QC flags for 1-h data
[nJ nI nT]=size(U);
id=Uqc>2;
u=U; u(id)=nan;
v=V; v(id)=nan;
LON=ncread(fileIn,'LONGITUDE');
LAT=ncread(fileIn,'LATITUDE');
% get sizes
[nJ,nI,nT]=size(U);
% typically for WERAs we only store the unique lon-lat vectors rather than
% a grid
if min(size(LON))==1
[LAT LON]=meshgrid(LAT,LON);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Y M D H MN S]=datevec(time);
% average values per day
% [ad,~,cd] = unique(data(:,1:3),'rows');
% out_day = [ad,accumarray(cd,data(:,5),[],@nanmean)];
[ad,~,cd] = unique([Y M D],'rows');
T=(datenum([ad(:,1) ad(:,2) ad(:,3) zeros(size(ad(:,3))) zeros(size(ad(:,3))) zeros(size(ad(:,3)))]));
% preallocation of variables
TIMED=T;
UD= nan(nJ,nI,size(ad,1));
VD= nan(nJ,nI,size(ad,1));
UsdD= nan(nJ,nI,size(ad,1));
VsdD= nan(nJ,nI,size(ad,1));
NOBS1D= nan(nJ,nI,size(ad,1));
NOBS2D= nan(nJ,nI,size(ad,1));
QCD= nan(nJ,nI,size(ad,1));
for j=1:nJ;
for i=1:nI;
if ~all(isnan(squeeze(u(j,i,:))))
clear out_U ; out_U = [ad,accumarray(cd,squeeze(u(j,i,:)),[],@nanmean )];
clear out_Usd ; out_Usd = [ad,accumarray(cd,squeeze(u(j,i,:)),[],@nanstd )];
clear out_V ; out_V = [ad,accumarray(cd,squeeze(v(j,i,:)),[],@nanmean )];
clear out_Vsd ; out_Vsd = [ad,accumarray(cd,squeeze(v(j,i,:)),[],@nanstd )];
clear out_N ; out_N = [ad,accumarray(cd,squeeze(u(j,i,:)),[],@nancount)];
UD(j,i,:) = out_U(:,4) ;
UsdD(j,i,:) = out_Usd(:,4);
VD(j,i,:) = out_V(:,4) ;
VsdD(j,i,:) = out_Vsd(:,4);
NOBS1D(j,i,:) = out_N(:,4) ;
NOBS2D(j,i,:) = out_N(:,4) ;
end
end
end
id=NOBS1D<=2 ; QCD(id)=4;
id=NOBS1D>2 & NOBS1D<= 6; QCD(id)=3;
id=NOBS1D>6 & NOBS1D<=12; QCD(id)=2;
id=NOBS1D>12 ; QCD(id)=1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load('variables_bonc.mat')
% locations of the radar stations
radialSite(1).location=[139.8497833 -37.3285500]; %NOCR
radialSite(2).location=[140.4562167 -37.9392667]; %BFCV
%% second approach: remap the u,v currents on a different grid rotated and
% parallel to the baseline, then get a 'conventional' transect centered
% at the lon-lat of the max data return
% new grid
[x12 y12] = lonlat2km(radialSite(1).location(1),radialSite(1).location(2),...
radialSite(2).location(1),radialSite(2).location(2));
d12 = sqrt(x12^2+y12^2);
east = cos(atan(y12/x12))*d12/2;
north = sin(atan(y12/x12))*d12/2;
% questa coppia (lon,lat) definisce il centro della baseline tra sit1 e
% sit2. tutta la griglia viene generata relativamente a questo punto.
[lon, lat] = km2lonlat(radialSite(1).location(1),radialSite(1).location(2),...
east,north);
% now define the grid relatively to the centre of the baseline connecting
% site1 to site2. the grid will be parallel to the baseline.
grid1 = 1;
grid2 = 0;
if grid1
grdRes = 6;
xGrid = -34*6:grdRes:34*6; % questa nella configurazione originale e nelle
% varianti -- ad eccezione dell'ultima
yGrid = -34*6:grdRes:34*6;
end
if grid2
grdRes = 1;
xGrid = -16:grdRes:16; % questa nella configurazione originale e nelle
% varianti -- ad eccezione dell'ultima
yGrid = -20:grdRes:-1;
end
[x y] = meshgrid(xGrid,yGrid);
[xGr,yGr] = rot_alfa(x,y,-atand(y12/x12));% la rotazione della griglia
% riporta tutto parallelo alla
% baseline sit1-sit2
% [lonGr,latGr]=km2lonlat(lon,lat,...
% xGr,yGr);
[lonGr,latGr]=km2lonlat(mean(LON(:)),mean(LAT(:)),...
xGr,yGr);
% load('variables_bonc.mat')
% regrid everything
UR=nan(size(UD));
VR=nan(size(UD));
for t=1:length(TIMED)
UR(:,:,t)=griddata(LON,LAT,squeeze(UD(:,:,t)),lonGr,latGr);
VR(:,:,t)=griddata(LON,LAT,squeeze(VD(:,:,t)),lonGr,latGr);
end
% find the point with the max data return
[nJR nIR nTR]=size(UR);
perGoodR=zeros(nJR,nIR);
for jR=1:nJR
for iR=1:nIR
if ~all(isnan(squeeze(UR(jR,iR,:))))
perGoodR(jR,iR)=numel(find(~isnan(squeeze(UR(jR,iR,:)))))/nTR*100;
end
end
end
[v pIR]=max(max(perGoodR));
[v pJR]=max(max(perGoodR'));
figure(3); clf; hold on
pcolor(lonGr,latGr,perGoodR)
plot(lonGr(:,pIR),latGr(:,pIR),'gd');
clear uTR vTR
% for t=20:-1:1
for t=1:length(TIMED)
uTR(t,:)=squeeze(UR(:,pIR,t));
vTR(t,:)=squeeze(VR(:,pIR,t));
end
% now I have everything in daily basis data on rotated grid. I will convert
% the data on weekly basis now
% get variable size and prefilter based on available QC flags
[nJ nI nT]=size(uTR);
[nJ nI nT]=size(vTR);
% step 1: sort out time and week days
iwk = cumsum([1;diff(weekday(TIMED) == 2) == 1]);
% [iw,jw] = ndgrid(iwk,1:size(sst,2));
[iw,jw] = ndgrid(iwk,1:size(uTR,2));
[iw,jw] = ndgrid(iwk,1:size(vTR,2));
z = accumarray(iwk,TIMED,[],@(x){strjoin(cellstr(datestr(x([1,end]),...
'dd-mmm-yyyy')),' ... ')});
% step 2: calculate averages and get number of obs. for each average. need
% to use cell2mat as data is stored into MATLAB cell format
% NB num2cell is required as there is a string (char) with time information that
% needs to be managed. conversion to cell handles that
clear wkly; wkly = [z, num2cell(accumarray([iw(:),jw(:)],uTR(:),[],@nanmean))];
UTR=cell2mat(wkly(:,2:end));
clear wkly; wkly = [z, num2cell(accumarray([iw(:),jw(:)],vTR(:),[],@nanmean))];
VTR=cell2mat(wkly(:,2:end));
% get time
TIMEw=cell2mat(wkly(:,1));
% tvec=reshape(TIMEw,nweeks, nJ, nI)
TIMEw=datenum(TIMEw(:,1:11));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[NTR NIR]=size(UTR);
[NTR NIR]=meshgrid(1:NIR,1:NTR);
figure(4); clf; quiver(NIR,NTR,UTR,VTR,1,'k')
% set(gca,'xlim',[ min(TIMEw) max(TIMEw)])
datetick('x','mm/dd/yy','keeplimits','keepticks')
% lon_C2=118.44;
% lat_C2=-19.99;
% [lon_thin,lat_thin]=meshgrid(lon,lat);
% dC2=sqrt((lon_thin-lon_C2).^2+(lat_thin-lat_C2).^2);
% [ixC2,iyC2]=find(dC2==min(min(dC2)));
%
% z=data.frame(
% x=seq(as.Date("2010-07-16"), by="+1 month", length.out=10)
% y=1:10
% )
% plot(y~x, data=z)
% abline(v=axis.Date(1, z$x), col="grey80")
  3 Kommentare
Tanziha Mahjabin
Tanziha Mahjabin am 21 Okt. 2020
Bearbeitet: Tanziha Mahjabin am 21 Okt. 2020
dpb
dpb am 21 Okt. 2020
time=ncread(fileIn, 'TIME');
reftime=ncreadatt(fileIn,'TIME','units'); reftime=reftime(12:end-4);
reftime=datenum(reftime,'yyyy-mm-dd HH:MM:SS');
time=time+reftime;
Don't use deprecated datenum, use datetime instead. Then plot routines are datetime aware and you'll get time axes automagically if using a datetime variable as the abscissa.
If the time is some number of time units from a reference, it will be a duration added to the reference datetime

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Data Distribution Plots finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by