Finding Dominant Frequency and Phase using FFT
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Matt Gaidica
am 3 Okt. 2020
Kommentiert: Bjorn Gustavsson
am 4 Okt. 2020
This is stemming from a forecasting problem, but my fundamental assumption about FFT appears to be incorrect. Below, I'm generating a pure sinusoid at 5Hz for 5 seconds (top). The amplitude of the FFT (padded, middle) confirms the dominant frequency. However, I'm unclear why phase at 5Hz would not equal 0 using angle() (bottom)? The ultimate goal is to find the dominant frequency and phase of a noisy signal using FFT, then forecast using a pure, phase-shifted sinusoid.
Fs = 125;
plotS = 5;
t = linspace(0,plotS,plotS*Fs);
fmod = 5;
pdelay = 0;
X = sin((2*pi*fmod*t) + pdelay);
close all
ff(800,600);
subplot(311);
plot(t,X);
hold on;
xlabel('Time (s)');
ylabel('Amplitude');
L = numel(t);
nPad = 5;
n = (2^nextpow2(L)) * nPad;
Y = fft(X,n);
f = Fs*(0:(n/2))/n;
P = abs(Y/n).^2;
A = angle(Y);
grid
subplot(312);
plot(f,P(1:n/2+1))
xlabel('Frequency (f)')
ylabel('|P(f)|^2')
xlim([0 10]);
grid
subplot(313);
plot(f,A(1:n/2+1));
xlabel('Frequency (f)')
ylabel('Phase (rad)');
xlim([fmod-2 fmod+2]);
grid
0 Kommentare
Akzeptierte Antwort
Bjorn Gustavsson
am 4 Okt. 2020
Change your function to cos((2*pi*fmod*t) + pdelay) and re-run your code-snippet.
Also check what happens when you reduce your time-axis by one sample.
HTH
2 Kommentare
Bjorn Gustavsson
am 4 Okt. 2020
Yup. I forgot you zero-padded your time-series, if you remove that you will see the difference between a signal that is perfectly periodic over your intervall and one that is not.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!