using Matlabfunction for determinant, not enough input arguments
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Tony Yu
am 7 Jul. 2020
Kommentiert: Star Strider
am 7 Jul. 2020
I think there should only be L, th2, th3 and th5 in J_home, am I missing something? I am trying to solve the determinant of J_home with the assume configuration
%finding Jacobian
syms t1 t2 t3 t31 t4 t41 t5 t51 t52 t6 te th1 th2 th3 th4 th5 th6 th1_ th2_ th3_ th4_ th5_ th6_ L
t_1=pi/2 ;d_1=0;a_1=0;alpha_1=pi/2;
t0=pi/2; d0=0;a0=0;alpha0=0;
t1 = 0; d1 = th1_; a1 = 0; alpha1 = 0;
t2 = th2_+pi; d2 = 0; a2 = L; alpha2 = 0;
t3 = th3_-pi/2;d3 = 0; a3 = L; alpha3= -pi/2;
t31 = 0; d31 =L; a31 = 0; alpha31 = 0;
t4 = 0;d4 = L+th4_;a4 =-L; alpha4 = pi;
t5 = th5_+pi;d5 = 0;a5 = L; alpha5 = pi/2;
t51 = pi/2; d51= L; a51 = 0; alpha51 = pi/2;
t52 = 0; d52 = L; a52 =0; alpha52 = 0;
t6 = th6_;d6 = L;a6 = 0; alpha6 = 0;
A_1_ = inTransMat(a_1,alpha_1,d_1,t_1);
A0_ = inTransMat(a0,alpha0,d0,t0);
%setting frame 0 as shown
A1 = inTransMat(a1,alpha1,d1,t1);
A2_ = inTransMat(a2,alpha2,d2,t2);
A3_ = inTransMat(a3,alpha3,d3,t3);
A31_= inTransMat (a31,alpha31,d31,t31);
A4_ = inTransMat(a4,alpha4,d4,t4);
A5_= inTransMat(a5,alpha5,d5,t5);
A51_= inTransMat (a51,alpha51,d51,t51);
A52_= inTransMat (a52,alpha52,d52,t52);
A6_= inTransMat(a6,alpha6,d6,t6);
T_ = A_1_*A0_*A1*A2_*A3_*A31_*A4_*A5_*A51_*A52_*A6_
T01_ = A_1_*A0_*A1;
T02_ = A_1_*A0_*A1*A2_;
T03_ = A_1_*A0_*A1*A2_*A3_*A31_;
T04_ = A_1_*A0_*A1*A2_*A3_*A31_*A4_;
T05_ = A_1_*A0_*A1*A2_*A3_*A4_*A5_*A51_*A52_;
T_06= vpa(T_,2)
Z0= vpa(T01_(1:3,3),2)
Z1= vpa(T01_(1:3,3),2)
Z2= vpa(T02_(1:3,3),2)
Z3= vpa(T03_(1:3,3),2)
Z4= vpa(T04_(1:3,3),2)
Z5= vpa(T05_(1:3,3),2)
pe= T_06(1:3,4:end)
%derivative of EE with respected q
Jv1 = Z0;
Jv2 = jacobian([pe],[th2_]);
Jv3 = jacobian([pe],[th3_]);
Jv4 = Z3;
Jv5 = jacobian([pe],[th5_]);
Jv6 = jacobian([pe],[d6]);
Jw1 = [0 0 0]';
Jw2 = Z1;
Jw3 = Z2;
Jw4 = [0 0 0]';
Jw5 = Z4;
Jw6 = Z5;
%JOINT 1,4 is a prismetic joint
%combine Jv and Jw into on column
J1q = [Jv1(:);Jw1(:)];
J2q = [Jv2(:);Jw2(:)];
J3q = [Jv3(:);Jw3(:)];
J4q = [Jv4(:);Jw4(:)];
J5q = [Jv5(:);Jw5(:)];
J6q = [Jv6(:);Jw6(:)];
J = [J1q J2q J3q J4q J5q J6q]
J_home = vpa(J,2)
%end effector @ homeposition
L=100;
th2_=0;
th3_=0;
th5_=0;
%assume the following configureation
J_fcn = matlabFunction(J_home)
J_num = J_fcn(L,th2_,th3_,th5_)
J_det=det(J_num)
%matrix not in full rank
function IT = inTransMat(a,b,c,d)
IT = [cos(d) -sin(d)*cos(b) sin(d)*sin(b) a*cos(d); sin(d) cos(d)*cos(b) -cos(d)*sin(b) a*sin(d); 0 sin(b) cos(b) c; 0 0 0 1];
end
function T = TransMat(a,b,c,d)
T = [cos(d) -sin(d)*cos(b) sin(d)*sin(b) a*cos(d); sin(d) cos(d)*cos(b) -cos(d)*sin(b) a*sin(d); 0 sin(b) cos(b) c; 0 0 0 1];
end
0 Kommentare
Akzeptierte Antwort
Star Strider
am 7 Jul. 2020
I am not certain with the problem is with the ‘J_fcn’ produced by matlabFunction. (The error may refer to the reshape call within it. I did not look at it closely.)
However, if you replace ‘J_fcn’ with:
J_fcn = @(L,th2_,th3_,th4_,th5_) J_home;
your code runs without error. You need to determine if it is producing the correct results.
Also, these can be defined as anonymous funcitons:
TransMat = @(a,b,c,d) [cos(d) -sin(d)*cos(b) sin(d)*sin(b) a*cos(d); sin(d) cos(d)*cos(b) -cos(d)*sin(b) a*sin(d); 0 sin(b) cos(b) c; 0 0 0 1];
inTransMat = @(a,b,c,d) [cos(d) -sin(d)*cos(b) sin(d)*sin(b) a*cos(d); sin(d) cos(d)*cos(b) -cos(d)*sin(b) a*sin(d); 0 sin(b) cos(b) c; 0 0 0 1];
simplifying your code a bit.
2 Kommentare
Star Strider
am 7 Jul. 2020
When I ran your code using my version of ‘J_fcn’, it appeared to work correctly. Since matlabFunciton did not produce a function that was usable, that was my only alternative.
I have nothing further to add. I will delete my Answer in a few minutes.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!