![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/346953/image.png)
Binary Logistic Regression Curve
25 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jonathan Moorman
am 2 Jul. 2020
Beantwortet: Aditya Patil
am 17 Aug. 2020
Hello! I am trying to create a logistical regression curve for my binary data in Figure 3. Is this possible to do in MATLAB, and if so, how could it be done? My code is below? Thanks
%Figure 2 Graphing
scatter(FactoredLength, FactoredAmplitude,5,'filled')
hold on
coefficients = polyfit(FactoredLength, FactoredAmplitude, 1);
xFit = linspace(min(FactoredLength), max(FactoredLength), 1000);
yFit = polyval(coefficients , xFit);
plot(xFit, yFit, 'r-', 'LineWidth', 2);
xlabel('Factored Length')
ylabel('Probability')
grid on;
hold off
figure
% Making data binary
Probability = ((exp(log10(FactoredAmplitude)))./(1+exp(log10(FactoredAmplitude))));
yHat(Probability > app.ThreshHoldValueEditField.Value) = 1;
yHat(Probability < app.ThreshHoldValueEditField.Value) = 0;
%Figure 3 Graphing
scatter(FactoredLength,yHat)
xlabel('Factored Length')
ylabel('Probability')
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/325822/image.png)
0 Kommentare
Akzeptierte Antwort
Aditya Patil
am 17 Aug. 2020
Use the fitglm function to fit logistic regression model to data. Check the following code for example,
% Create random data
x = rand(100, 1);
y = x > 0.5;
y(1:50) = x(1:50) > 0.3; % To avoid perfect seperation
% Fit model
mdl = fitglm(x, y, "Distribution", "binomial");
xnew = linspace(0,1,1000)'; % test data
ynew = predict(mdl, xnew);
scatter(x, y);
hold on;
plot(xnew, ynew);
This will give following output.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/346953/image.png)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!