Error when using convolution2dLayer between connected maxPooling2dLayer and maxUnpooling2dLayer

3 Ansichten (letzte 30 Tage)
I'm trying to create a modified UNet using connected max pooling and max unpooling layers. However, if I put a convolution layer between the pooling and unpooling layers, the network isn't valid. The error is reported for the unpooling layer:
Input size mismatch. Size of input to this layer is different from the expected input size.
The sizes for the CONV layer, MAXPOOL indices, and MAXPOOL size inputs are all different. Minimum working example below. Am I missing something obvious, or is it not possible to use other layers between maxpool and maxunpool?
% define layers
layers = [
imageInputLayer([128, 128], 'Name', 'INPUTLAYER')
maxPooling2dLayer([2 2], 'HasUnpoolingOutputs', true, 'Stride', [2 2], 'Name', 'MAXPOOL')
convolution2dLayer([3 3], 32, 'Padding', 'same', 'Stride', [1 1], 'Name', 'CONV')
maxUnpooling2dLayer('Name', 'UNPOOL')
regressionLayer('Name', 'MSE')
];
% define network
lgraph = layerGraph(layers);
% define connections
lgraph = connectLayers(lgraph, 'MAXPOOL/indices', 'UNPOOL/indices');
lgraph = connectLayers(lgraph, 'MAXPOOL/size', 'UNPOOL/size');
% plot and check
analyzeNetwork(lgraph);

Akzeptierte Antwort

Mohammad Sami
Mohammad Sami am 29 Jun. 2020
You convolution layer is changing the number of channels in the output after the max pooling.
This causes the input size mismatch. You need to match the number of channels output by convolution layer to the output by maxpooling layer.
% define layers
layers = [
imageInputLayer([128, 128], 'Name', 'INPUTLAYER')
maxPooling2dLayer([2 2], 'HasUnpoolingOutputs', true, 'Stride', [2 2], 'Name', 'MAXPOOL')
convolution2dLayer([3 3], 1, 'Padding', 'same', 'Stride', [1 1], 'Name', 'CONV')
maxUnpooling2dLayer('Name', 'UNPOOL')
regressionLayer('Name', 'MSE')
];
% define network
lgraph = layerGraph(layers);
% define connections
lgraph = connectLayers(lgraph, 'MAXPOOL/indices', 'UNPOOL/indices');
lgraph = connectLayers(lgraph, 'MAXPOOL/size', 'UNPOOL/size');
% plot and check
analyzeNetwork(lgraph);
  1 Kommentar
Bradley Treeby
Bradley Treeby am 29 Jun. 2020
Thanks! This pointed me to the problem in my complete code - my index to link the number of channels in the different encoding and decoding levels was offset by one.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by