genetic algorithm for curve fitting

1 Ansicht (letzte 30 Tage)
Proman
Proman am 28 Jun. 2020
Kommentiert: Star Strider am 28 Jun. 2020
Hello Everyone
I want to Fit a curve (called MFit) on another curve (called M)
MFit is a function and defined by the following relation:
MFit = M0 + c0 * (h * z - log(z - z0 / z0))
and M is a 100-element vector. I want to fit MFit on M by choosing the right value of c0. z is a 100-element vector and M0,h and z0 are constants. What I have in mind is to define a target function as
Fun1 = abs(M - MFit)
so that by minimzing it, MFit will be fit. This is my proposed method:
MFit = @(c0) (M0 + c0 * (z - h * log((z + z0) / z0)));
Fun1 = @(c0) abs(M - MFit);
rng default
C0 = ga(Fun1,1);
but things go wrong when I run the code. Can anybody help me how I may solve this problem with genetic algorithm?

Akzeptierte Antwort

Star Strider
Star Strider am 28 Jun. 2020
I would do something like this (with ‘M’ and the constants already existing in your workspace):
MFit = @(c0,M0,h,z,z0) (M0 + c0 * (z - h * log((z + z0) / z0)));
Fun1 = @(c0) norm(M - MFit(c0,M0,h,z,z0));
c0_est = ga(Fun1, 1);
The fitness funciton must return a scalar value. (The ga call can be further optimised by using an optons structure.)
.
  4 Kommentare
Proman
Proman am 28 Jun. 2020
Many thanks for your productive direction Sir
Star Strider
Star Strider am 28 Jun. 2020
As always, my pleasure!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by