Lsqlin-Matrix badly scaled
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Dear all,
I would appreciate any comment or help on this. I have to solve a constrained linear squared problem with lsqlin which is defined as follows:
min sum(xi - dataA )^2 subject to sum(xi*dataB)=Constant xi...xn
n = 3000;
Aeq = vertcat(ones(1,n),Data B) ;
beq=matrix of constant (i.e. constraints)
lb = zeros(n,1) ;
H = eye(n) ;
Please correct me if i am wrong but i think by using lsqlin my problem is translated this way: (i may be wrong)
[x,fval] = lsqlin( sqrt(1/2).*H, sqrt(1/2).*dataA ,[],[], Aeq,beq,lb,[],initial guess, []);
I keep getting the message "Warning: Matrix is singular, close to singular or badly scaled." ( i have also tried to optimize the problem with fmincon but i get the same message)
I understand that the matrix is ill conditioned but I honestly don't know how to fix that. Any advice would be much appreciated. Thanks a lot
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Least Squares finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!