How to calculate R-square using robust linear regression function
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
In the linear regression function (regress), one may get the R^2 value directly from one of the 'stats' variable in [b, bint, r, rint, stats] = regress(y,X) function
I want to do a robust linear regression with [b,stats] = robustfit(X,Y)
However, I can't find in the help panel how to assess R^2 from the output variables of the 'robustfit' function.
Any help will be very welcome
JA
0 Kommentare
Antworten (2)
Matt Fig
am 29 Nov. 2012
[brob, rob_stats] = robustfit(x,y);
rsquare = corr(y,brob(1)+brob(2)*x)^2
0 Kommentare
Christian
am 19 Mai 2015
Hi there, although this thread is really old, I'm gonna give it a shot :-) I encountered the same problem and Matt's formula seems to solve it beautifully when regressing against only 1 independent variable. However, my x contains 4 factors. How would you go about calculating R-squared in that case? I tried the following, but it doesn't seem to work:
B_Rsqrd(1,j) = corr(Y,b(1)+b(2)*X(:,1)+b(3)*X(:,2)+b(4)*X(:,3)+b(5)*X(:,4))^2;
Can someone help me out here?
Any help is much appreciated!
Christian
0 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!