# finding frequency and domain of equation using ode45

1 Ansicht (letzte 30 Tage)
shahin hashemi am 9 Jun. 2020
Kommentiert: Star Strider am 17 Jul. 2020
dear all
i use following code to find answer of the following equation :
u ̈+u+u^3=0
function dydt= vdp1(t,u)
dydt=[u(2);-u(1)-((u(1))^3)];
clc
clear all
for a=0.1:0.1:0.3
[t,y]=ode45(@vdp1,[0 60],[0 a]);
hold on
plot(t,y(:,1))
end
is there any way to find frequency and domain of this equation ? i know ode 45 gives nonuniform answer but can i use interpolation to finde the maximum of domain and The intersection with the x axis
In summary i want to find exact amount of red and green dot
##### 0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Akzeptierte Antwort

Star Strider am 9 Jun. 2020
Try this:
vdp1 = @(t,u) [u(2);-u(1)-((u(1))^3)];
tv = linspace(0, 60, 5000);
a=0.1:0.1:0.3;
zci2 = @(v) find(diff(sign(v)));
for k = 1:numel(a)
[t,y]=ode45(@vdp1,tv,[0 a(k)]);
ym(:,k) = y(:,1);
lmx(:,k) = islocalmax(y(:,1));
lmn(:,k) = islocalmin(y(:,1));
zx2(:,k) = find(diff(sign(y(:,1))));
end
figure
for k = 1:3
subplot(3,1,k)
plot(t,ym(:,k))
hold on
plot(t(lmx(:,k)),ym(lmx(:,k),k), '^r') % Plot Maxima
plot(t(lmn(:,k)),ym(lmn(:,k),k), 'vg') % Plot Minima
plot(t(zx2(:,k)),ym(zx2(:,k),k), 'dk') % Plot Zero-Crossings
hold off
grid
end
producing:
##### 6 Kommentare4 ältere Kommentare anzeigen4 ältere Kommentare ausblenden
shahin hashemi am 17 Jul. 2020
dear star srider sry to bother you again
again tanx for ur all help
if it is possible i have another question :
can u plz say y when i increase a from 0.3 to for example 0.4 i have the following error :
Unable to perform assignment because
the size of the left side is 20-by-1
and the size of the right side is
21-by-1.
Error in Untitled2 (line 11)
zx2(:,k) =
find(diff(sign(y(:,1))));
i run the following code :
clc
clear all
tv = linspace(0, 60, 5000);
a=0.1:0.1:0.4;
zci2 = @(v) find(diff(sign(v)));
for k = 1:numel(a)
[t,y]=ode45(@vdp1,tv,[0 a(k)]);
ym(:,k) = y(:,1);
lmx(:,k) = islocalmax(y(:,1));
lmn(:,k) = islocalmin(y(:,1));
zx2(:,k) = find(diff(sign(y(:,1))));
A=t(zx2(7,k))-t(zx2(5,k));
B=t(zx2(9,k))-t(zx2(7,k));
C=t(zx2(11,k))-t(zx2(9,k));
O(k)=(A+B+C)/3;
L=max(ym);
end
tanx alot again for all your attention
Star Strider am 17 Jul. 2020
When ‘a’ is 0.4, there are more zero-crossings, so ‘zx2’ no longer has the same row size.
Creating ‘zx2’ as a cell array works, however much of that loop then has to be rewritten.
Try this:
tv = linspace(0, 60, 5000);
a=0.1:0.1:0.4;
zci2 = @(v) find(diff(sign(v)));
for k = 1:numel(a)
[t,y]=ode45(@vdp1,tv,[0 a(k)]);
ym(:,k) = y(:,1);
lmx(:,k) = islocalmax(y(:,1));
lmn(:,k) = islocalmin(y(:,1));
zx2{:,k} = find(diff(sign(y(:,1))));
zxk = zx2{:,k};
A=t(zxk(7))-t(zxk(5));
B=t(zxk(9))-t(zxk(7));
C=t(zxk(11))-t(zxk(9));
O(k)=(A+B+C)/3;
L=max(ym);
end
That appears to be robust to various values of ‘a’.
.

Melden Sie sich an, um zu kommentieren.

### Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

R2018a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by