Plotting reliability model code
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Following is my code for degradation reliability. I just cannot figure out why it would not plot the graph. All I get is a straight line. Could anyone help me out? I need x axis to be time and y axis to be 0 to 1. Graph should look like decreasing from 1 to 0 over time.
function [j] = Reliability(N,i1,sigma1,bb,B1,T,k)
% i1 is initial value % sigma1 is sigma value % bb is mu value % B1 is Threshold value % T is Time % k is constant value which is 1
clf; % clear the entire figure
tt = (0:1:T)/N; % t is the column vector [0 1/N 2/N ... 1] tt = tt*T;
% Calculation for first phi, simplified to tenth p= (B1-i1-(bb*tt))/(sigma1*sqrt(tt)); p= roundn(p,-1); %round up to tenth
if p==0.0 % finding phi value l=.5*k; elseif p==0.1 l=.5478*k; elseif p==0.2 l=.5793*k; elseif p==0.3 l=.6255*k; elseif p==0.4 l=.6554*k; elseif p==0.5 l=.6985*k; elseif p==0.6 l=.7257*k; elseif p==0.7 l=.7642*k; elseif p==0.8 l=.7881*k; elseif p==0.9 l=.8212*k; elseif p==1.0 l=.8413*k; elseif p==1.1 l=.8686*k; elseif p==1.2 l=.8849*k; elseif p==1.3 l=.9066*k; elseif p==1.4 l=.9192*k; elseif p==1.5 l=.9357*k; elseif p==1.6 l=.9452*k; elseif p==1.7 l=.9573*k; elseif p==1.8 l=.9641*k; elseif p==1.9 l=.9726*k; elseif p==2.0 l=.9772*k; elseif p==2.1 l=.9830*k; elseif p==2.2 l=.9861*k; elseif p==2.3 l=.9898*k; elseif p==2.4 l=.9918*k; elseif p==2.5 l=.9941*k; elseif p==2.6 l=.9953*k; elseif p==2.7 l=.9967*k; elseif p==2.8 l=.9974*k; elseif p==2.9 l=.9982*k; elseif p==3.0 l=.9987*k; elseif p>3.0 l=1*k; elseif p==-0.1 l=.4522*k; elseif p==-0.2 l=.4207*k; elseif p==-0.3 l=.3745*k; elseif p==-0.4 l=.3446*k; elseif p==-0.5 l=.3015*k; elseif p==-0.6 l=.2743*k; elseif p==-0.7 l=.2358*k; elseif p==-0.8 l=.2119*k; elseif p==-0.9 l=.1788*k; elseif p==-1.0 l=.1587*k; elseif p==-1.1 l=.1314*k; elseif p==-1.2 l=.1151*k; elseif p==-1.3 l=.0934*k; elseif p==-1.4 l=.0808*k; elseif p==-1.5 l=.0643*k; elseif p==-1.6 l=.0548*k; elseif p==-1.7 l=.0427*k; elseif p==-1.8 l=.0359*k; elseif p==-1.9 l=.0274*k; elseif p==-2.0 l=.0228*k; elseif p==-2.1 l=.0170*k; elseif p==-2.2 l=.0139*k; elseif p==-2.3 l=.0102*k; elseif p==-2.4 l=.0082*k; elseif p==-2.5 l=.0059*k; elseif p==-2.6 l=.0047*k; elseif p==-2.7 l=.0033*k; elseif p==-2.8 l=.0026*k; elseif p==-2.9 l=.0018*k; elseif p==-3.0 l=.0013*k;
else l=0*k; end
% Calculation for first phi, simplified to tenth p1=-1*((B1-i1+bb*tt)/(sigma1*sqrt(tt))); p1= roundn(p1,-1); %round up to tenth
if p1==0.0 % finding phi value l1=.5; elseif p1==0.1 l1=.5478*k; elseif p1==0.2 l1=.5793*k; elseif p1==0.3 l1=.6255*k; elseif p1==0.4 l1=.6554*k; elseif p1==0.5 l1=.6985*k; elseif p1==0.6 l1=.7257*k; elseif p1==0.7 l1=.7642*k; elseif p1==0.8 l1=.7881*k; elseif p1==0.9 l1=.8212*k; elseif p1==1.0 l1=.8413*k; elseif p1==1.1 l1=.8686*k; elseif p1==1.2 l1=.8849*k; elseif p1==1.3 l1=.9066*k; elseif p1==1.4 l1=.9192*k; elseif p1==1.5 l1=.9357*k; elseif p1==1.6 l1=.9452*k; elseif p1==1.7 l1=.9573*k; elseif p1==1.8 l1=.9641*k; elseif p1==1.9 l1=.9726*k; elseif p1==2.0 l1=.9772*k; elseif p1==2.1 l1=.9830*k; elseif p1==2.2 l1=.9861*k; elseif p1==2.3 l1=.9898*k; elseif p1==2.4 l1=.9918*k; elseif p1==2.5 l1=.9941*k; elseif p1==2.6 l1=.9953*k; elseif p1==2.7 l1=.9967*k; elseif p1==2.8 l1=.9974*k; elseif p1==2.9 l1=.9982*k; elseif p1==3.0 l1=.9987*k; elseif p1>3.0 l1=1*k; elseif p1==-0.1 l1=.4522*k; elseif p1==-0.2 l1=.4207*k; elseif p1==-0.3 l1=.3745*k; elseif p1==-0.4 l1=.3446*k; elseif p1==-0.5 l1=.3015*k; elseif p1==-0.6 l1=.2743*k; elseif p1==-0.7 l1=.2358*k; elseif p1==-0.8 l1=.2119*k; elseif p1==-0.9 l1=.1788*k; elseif p1==-1.0 l1=.1587*k; elseif p1==-1.1 l1=.1314*k; elseif p1==-1.2 l1=1.1151*k; elseif p1==-1.3 l1=.0934*k; elseif p1==-1.4 l1=.0808*k; elseif p1==-1.5 l1=.0643*k; elseif p1==-1.6 l1=.0548*k; elseif p1==-1.7 l1=.0427*k; elseif p1==-1.8 l1=.0359*k; elseif p1==-1.9 l1=.0274*k; elseif p1==-2.0 l1=.0228*k; elseif p1==-2.1 l1=.0170*k; elseif p1==-2.2 l1=.0139*k; elseif p1==-2.3 l1=.0102*k; elseif p1==-2.4 l1=.0082*k; elseif p1==-2.5 l1=.0059*k; elseif p1==-2.6 l1=.0047*k; elseif p1==-2.7 l1=.0033*k; elseif p1==-2.8 l1=.0026*k; elseif p1==-2.9 l1=.0018*k; elseif p1==-3.0 l1=.0013*k;
else l1=0*k; end
%reliability equation %l and l1 has been already calculated j=(l*tt-(exp((2*bb*(B1-i1))/sigma1^2)*(l1*tt))); plot(tt,j);
Thanks in advance.
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Line Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!