Use fsolve to solve matrix

1 Ansicht (letzte 30 Tage)
Rodrigo Blas
Rodrigo Blas am 8 Mai 2020
Would like to use fsolve to solve xeq.
When i multiply with vector 'T' and 'Y' I only get one value.
How would I make it return a vector. THe issue is at the botto of the code
function ydot=Zazarian_f_5(~,x)
X=x(1); y=x(2); T=x(3);
% given & calculation
T0=325;
Ta=300;
Fa0=5;
Fb0=10;
Fi0=10;
Ca0=0.2;
Cp_a=20;
Cp_b=20;
Cp_c=20;
Cp_i=18;
alpha=0.00015;
k1=0.0002;
Ua=320;
pb=1400;
e=25000;
mc=18;
thb=2;
thi=2;
delta_Hrx=-20000;
Cp_cool=18;
r=1.987;
kc1=1000;
sumcp=Cp_a+Cp_b*thb+Cp_i*thi;
%calculation
k2=k1*exp((e/r)*((1/300)-(1/T)));
Kc2=kc1*exp((-delta_Hrx/r)*((1/305)-(1/T)));
CA=Ca0*(1-X)*y*(T0/T);
CB=Ca0*(2-X)*y*(T0/T);
CC=2*Ca0*X*y*(T0/T);
Ci=2*Ca0*y*(T0/T);
ra=-k2*((CA*CB)-((CC^2)/Kc2));
ydot(1)=(-ra)/(Fa0);
ydot(2)=(-alpha/(2*y))*(T/T0);
ydot(3)=(-delta_Hrx*ra)/(Fa0*sumcp);
ydot = ydot';
end
clear all
clc
y0=[0 1 325];
W=[0 1000];
r=1.987;
kc1=1000;
Tkc1 = 305;
T0=325;
delta_Hrx=-20000;
[t,z]=ode45(@Zazarian_f_5, W, y0);
T = z(:,3);
y=z(:,2);
X = z(:,1);
figure
plot(t, T);
To=325;
plot(t, z(:,3));
xlabel('catalyst weight in kg');
ylabel('Temperature');
legend('T');
title('Temperature');
cao=0.2;
Kc=kc1*exp((-delta_Hrx/r)*((1/Tkc1)-(1/T)));
Z=To./T.*y;
cae=@(xeq)cao.*(1-xeq).*Z;
cbe=@(xeq)cao.*(thb-2*xeq).*Z;
cce=@(xeq)cao.*2.*xeq.*Z;
F=@(xeq) cce.^2./(cae.*cbe)-kc1*exp((dhrx/R)*((1/305)-(1./T)));
xeq=fsolve(F,.7);
figure
plot(t, z(:,1),t,xeq);
ylim([0,1.2])
xlabel('catalyst weight in kg');
ylabel('conversion X');
legend('X','Xe');
title('converison X and Xe')
Undefined operator '.^' for input arguments of type
'function_handle'.
Error in
zzz>@(xeq)cce.^2./(cae.*cbe)-kc1*exp((dhrx/R)*((1/305)-(1./T)))
Error in fsolve (line 242)
fuser = feval(funfcn{3},x,varargin{:});
Error in zzz (line 44)
xeq=fsolve(F,.7);
>>

Antworten (1)

Walter Roberson
Walter Roberson am 8 Mai 2020
F = @(xeq) cce(xeq).^2 ./ (cae(xeq) .* cbe(xeq)) - kc1*exp((dhrx/R)*((1/305)-(1./T)));
It looks like the part starting from kc1 is constant, so for efficiency calculate the term first and assign to a variable and use the variable.
  2 Kommentare
Rodrigo Blas
Rodrigo Blas am 8 Mai 2020
I get the same undefined operator error
clear all
clc
y0=[0 1 325]; % why a initial pressure drop of 1
W=[0 1000];
r=1.987;
kc1=1000;
Tkc1 = 305;
T0=325;
delta_Hrx=-20000;
% X vs W
[t,z]=ode45(@Zazarian_f_5, W, y0);
T = z(:,3);
y=z(:,2);
X = z(:,1);
%T = T0 + (X*delta_Hrx)/(60);
% Temperature vs W
figure
plot(t, T);
%using other guys
To=325;
plot(t, z(:,3));
xlabel('catalyst weight in kg');
ylabel('Temperature');
legend('T');
title('Temperature');
% step 2 Kc -- equilibrium constant equation at a t
cao=0.2;
%Kc2=kc1*exp((-delta_Hrx/r)*((1/305)-(1/T)));
Kc=kc1*exp((-delta_Hrx/r)*((1/Tkc1)-(1/T)));
% step 6 xe equation
%base = (3*Kc)/4;
%base2 = (Kc/4)-1;
%top =((base)-sqrt(base.^2 - 2.*Kc.*(base2)));
%bot = (2.*(base2));
%Xe = top/bot;
%Xe = ((base)-sqrt(base.^2 - 2.*Kc.*(base2)))/(2.*(base2));
%Xe = (((3*Kc)/4)-sqrt(((3*Kc)/4).^2 - (2*Kc)*((Kc/4)-1)))/(2*((Kc/4)-1));
Z=To./T.*y;
dhrx=-20000;
R=1.987;
cae=@(xeq)cao.*(1-xeq).*Z;
cbe=@(xeq)cao.*(thb-2*xeq).*Z;
cce=@(xeq)cao.*2.*xeq.*Z;
KC=kc1*exp((dhrx/R)*((1/305)-(1./T)));
F=@(xeq) cce.^2./(cae.*cbe)-KC;
xeq=fsolve(F,.7);
figure
plot(t, z(:,1),t,xeq);
ylim([0,1.2])
xlabel('catalyst weight in kg');
ylabel('conversion X');
legend('X','Xe');
title('converison X and Xe')
function ydot=Zazarian_f_5(~,x)
X=x(1); y=x(2); T=x(3);
% given & calculation
T0=325;
Ta=300;
Fa0=5;
Fb0=10;
Fi0=10;
Ca0=0.2;
Cp_a=20;
Cp_b=20;
Cp_c=20;
Cp_i=18;
alpha=0.00015;
k1=0.0002;
Ua=320;
pb=1400;
e=25000;
mc=18;
thb=2;
thi=2;
dhrx=-20000;
Cp_cool=18;
r=1.987;
kc1=1000;
sumcp=Cp_a+Cp_b*thb+Cp_i*thi;
%calculation
k2=k1*exp((e/r)*((1/300)-(1/T)));
Kc2=kc1*exp((-dhrx/r)*((1/305)-(1/T)));
CA=Ca0*(1-X)*y*(T0/T);
CB=Ca0*(2-X)*y*(T0/T);
CC=2*Ca0*X*y*(T0/T);
Ci=2*Ca0*y*(T0/T);
ra=-k2*((CA*CB)-((CC^2)/Kc2));
ydot(1)=(-ra)/(Fa0);
ydot(2)=(-alpha/(2*y))*(T/T0);
ydot(3)=(-dhrx*ra)/(Fa0*sumcp);
ydot = ydot';
end
I get the same undefined operator error.
Walter Roberson
Walter Roberson am 8 Mai 2020
You had several problems, with the first one being that you missed the part where I passed xeq into each of the function handles.
You also had thb undefined in a function handle.
Your fsolve was never going to work. Your first part of your equation is scalar, and you subtract from that the vector KC (it is a vector because it involves 1/T and T is a vector). It is not possible to find a single xeq that solves all of those equations simultaneously -- and if you did manage to do so then it would give you a single scalar result where your plot() call shows that you expect xeq to be the same length as t is. So we deduce that what you want is to solve for each t value individually.
y0=[0 1 325]; % why a initial pressure drop of 1
W=[0 1000];
r=1.987;
kc1=1000;
Tkc1 = 305;
T0=325;
thb = 2;
delta_Hrx=-20000;
% X vs W
[t,z]=ode45(@(t,x) Zazarian_f_5(t,x,thb), W, y0);
T = z(:,3);
y=z(:,2);
X = z(:,1);
%T = T0 + (X*delta_Hrx)/(60);
% Temperature vs W
figure
plot(t, T);
%using other guys
To=325;
plot(t, z(:,3));
xlabel('catalyst weight in kg');
ylabel('Temperature');
legend('T');
title('Temperature');
% step 2 Kc -- equilibrium constant equation at a t
cao=0.2;
%Kc2=kc1*exp((-delta_Hrx/r)*((1/305)-(1/T)));
Kc=kc1*exp((-delta_Hrx/r)*((1/Tkc1)-(1/T)));
% step 6 xe equation
%base = (3*Kc)/4;
%base2 = (Kc/4)-1;
%top =((base)-sqrt(base.^2 - 2.*Kc.*(base2)));
%bot = (2.*(base2));
%Xe = top/bot;
%Xe = ((base)-sqrt(base.^2 - 2.*Kc.*(base2)))/(2.*(base2));
%Xe = (((3*Kc)/4)-sqrt(((3*Kc)/4).^2 - (2*Kc)*((Kc/4)-1)))/(2*((Kc/4)-1));
Z=To./T.*y;
dhrx=-20000;
R=1.987;
cae=@(xeq)cao.*(1-xeq).*Z;
cbe=@(xeq)cao.*(thb-2*xeq).*Z;
cce=@(xeq)cao.*2.*xeq.*Z;
KC=kc1*exp((dhrx/R)*((1/305)-(1./T)));
options = optimset('fsolve');
options = optimset(options, 'Algorithm', 'trust-region-reflective', 'display', 'none');
xeq = zeros(size(T));
x0 = 0.7;
for K = 1 : numel(KC)
F = @(xeq) cce(xeq).^2./(cae(xeq).*cbe(xeq))-KC(K);
x0 = fsolve(F, x0, options);
xeq(K) = x0;
end
figure
plot(t, z(:,1), t, xeq);
ylim([0,1.2])
xlabel('catalyst weight in kg');
ylabel('conversion X');
legend('X','Xe');
title('converison X and Xe')
function ydot=Zazarian_f_5(~, x, thb)
X=x(1); y=x(2); T=x(3);
% given & calculation
T0=325;
Ta=300;
Fa0=5;
Fb0=10;
Fi0=10;
Ca0=0.2;
Cp_a=20;
Cp_b=20;
Cp_c=20;
Cp_i=18;
alpha=0.00015;
k1=0.0002;
Ua=320;
pb=1400;
e=25000;
mc=18;
thi=2;
dhrx=-20000;
Cp_cool=18;
r=1.987;
kc1=1000;
sumcp=Cp_a+Cp_b*thb+Cp_i*thi;
%calculation
k2=k1*exp((e/r)*((1/300)-(1/T)));
Kc2=kc1*exp((-dhrx/r)*((1/305)-(1/T)));
CA=Ca0*(1-X)*y*(T0/T);
CB=Ca0*(2-X)*y*(T0/T);
CC=2*Ca0*X*y*(T0/T);
Ci=2*Ca0*y*(T0/T);
ra=-k2*((CA*CB)-((CC^2)/Kc2));
ydot(1)=(-ra)/(Fa0);
ydot(2)=(-alpha/(2*y))*(T/T0);
ydot(3)=(-dhrx*ra)/(Fa0*sumcp);
ydot = ydot';
end

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Argument Definitions finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by