Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

How to simplify this and make it efficient?

1 Ansicht (letzte 30 Tage)
Donghun Lee
Donghun Lee am 6 Mai 2020
Geschlossen: Ameer Hamza am 6 Mai 2020
lc, clear all
A= 0.06;
k_l = 26400; %Linear stiffness
m = 483; %Mass
l =0.5;
d =-0.005;
f_n = sqrt(k_l/m)/(2*pi); %Natural frequency
%%
Om_array = linspace(0,20,20); %in rad/s-1
l_array = linspace(0,1,20);
[om_array, L_array] = meshgrid(Om_array, l_array);
Response_amp = zeros(size(Om_array));
T = 150;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(l_array)
Om = om_array(i,j);
l = L_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t)))).* ...
(sqrt((l-d).^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d).^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
%% plot
figure(1);
ax = axes();
view(3);
hold(ax);
view([30 33]);
grid on
mesh(om_array/(2*pi),L_array,Response_amp) ;
xlabel('Frequency (Hz)')
ylabel('Length of the spring (m)')
zlabel('Response Amplitude (m)')
set(gca,'FontSize',15)
% set(gca,'xtick',[])
% set(gca,'ytick',[])
% set(gca,'ztick',[])
%%
%l = linspace(0,1,40);
%b = max(max(Response_amp));
hold on
d =-0.01;
Om_array = linspace(0,20,20); %in rad/s-1
l_array = linspace(0,1,20);
[om_array, L_array] = meshgrid(Om_array, l_array);
Response_amp = zeros(size(Om_array));
T = 150;
x0 = [0,0];
for i=1:numel(Om_array)
for j=1:numel(l_array)
Om = om_array(i,j);
l = L_array(i,j);
k_s = -(k_l*(l-d))/(4*d); %Spring stiffness
f = @(t,x) [ x(2); ...
-(2*k_s*(x(1)-(A*sin(Om*t)))).* ...
(sqrt((l-d).^2 + (x(1)-(A*sin(Om*t)))^2) - l)/ ...
(m*(sqrt((l-d).^2 + (x(1)-(A*sin(Om*t)))^2))) ];
[t, x] = ode45(f,[100,T],x0);
Response_amp(i,j) = (max(x(:,1)) - min(x(:,1)))/2;
% xval(i) = Om/(2*pi) ;
end
end
%% plot
figure(1);
ax = axes();
view(3);
hold(ax);
view([30 33]);
grid on
mesh(om_array/(2*pi),L_array,Response_amp) ;
xlabel('Frequency (Hz)')
ylabel('Length of the spring (m)')
zlabel('Response Amplitude (m)')
set(gca,'FontSize',15)
mesh(om_array/(2*pi),L_array,Response_amp) ;
hold off
Hi, all. This code shows 2 different graphs in the same figure when d = -0.005 and -0.01. However, I wish to simplify this code as it seems to be quite long-winded. Also, I want to vary d from -0.005 to -0.03.
Thanks for reading and I would appreciate your time for solving this problem.

Antworten (0)

Diese Frage ist geschlossen.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by