How to calculate a function of multiple variables which also has an integral in its definition?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dea All,
I have the following function whose definition needs an integral to be evaluated. The integral itself is dependent on the function input variables.
r0 = 0.5;
z0 = 0.5;
G(r,z,z-z0) = 1/2*r*r0^2 * integral(cos(lambda)/sqrt((r^2+r0^2-2*r*r0*cos(lambda)+(z-z0)^2)) dlambda, -pi, pi);
Could someone please help me how I can get for example G(0.75, 0.75, 0.25)? My final goal is to find G over a rectangular meshgrid.
Thanks,
Ahmad
0 Kommentare
Antworten (2)
Matt J
am 30 Okt. 2012
Create an anonymous function for the integrand as a function of lambda
G=@(r,z,z-z0) 1/2*r*r0^2 * integral(@(lambda) cos(lambda)/sqrt((r^2+r0^2-2*r*r0*cos(lambda)+(z-z0)^2)) , -pi, pi);
5 Kommentare
Matt J
am 30 Okt. 2012
I don't see z anywhere on the RHS. Why not just have
G=@(r,z_minus_z0)
Matt J
am 30 Okt. 2012
Replace all the * and / by elementwise operations .* and ./
G=@(r,z,z_minus_z0) 1/2.*r.*r0^2 .* ... integral(@(lambda) cos(lambda)./sqrt((r.^2+r0.^2-2.*r.*r0.*cos(lambda)+z_minus_z0.^2)) , -pi, pi);
Star Strider
am 30 Okt. 2012
You need to ‘vectorize’ it:
r0 = 0.5;
z0 = 0.5;
r = 1;
z = 1;
G = @(r,z,z0) 1/2.*r.*r0.^2 .* integral(@(lambda) cos(lambda)./sqrt((r.^2+r0.^2-2.*r.*r0.*cos(lambda)+(z-z0).^2)) , -pi, pi);
G(r,z,z0)
3 Kommentare
Star Strider
am 30 Okt. 2012
You have to vectorize it using the ‘dot’ operators:
G = @(r, r0, z, z0) 1/2.*r.*r0.^2 .* integral(@(lambda) cos(lambda)./sqrt((r.^2+r0.^2-2.*r.*r0.*cos(lambda)+(z-z0).^2)) , -pi, pi);
See if that works as you want it to.
Siehe auch
Kategorien
Mehr zu Scope Variables and Generate Names finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!