How to fit a common linear trend observed across multiple sensors?
4 views (last 30 days)
Show older comments
Let's say I have 10 noisy sensors measuring temperature vs time, and I want to fit a linear trend which is common across all 10 sensors. How do I do this? (I believe I shouldn't average the sensors' values at each time step and then fit a trend to the resulting average, since that doesn't seem to be the same thing, but let me know if it is). Here is an example of the data I want to fit,
%% Make some fake noisy measurements
timeStep = 1:100; % Time step
for iSensor = 1:10 % Loop through sensors
% Dimensions of Temperature: nSensors x nTime
Temperature(iSensor,:) = (5 + rand(1,1))*timeStep + ...% Add noise to the true slope of 5
(rand(1, length(timeStep))-0.5)*100 + 7; % Add noise to the true offset of 7
end
figure;
plot(timeStep, Temperature);
xlabel('Time'); ylabel('Temperature'); title('Noisy Temperature');
0 Comments
Accepted Answer
Rik
on 15 Apr 2020
You can just replicate the x-values and linearize all your data:
%% Make some fake noisy measurements
timeStep = 1:100; % Time step
nSensors=10;
Temperature=zeros(nSensors,numel(timeStep));
for iSensor = 1:nSensors % Loop through sensors
% Dimensions of Temperature: nSensors x nTime
Temperature(iSensor,:) = (5 + rand(1,1))*timeStep + ...% Add noise to the true slope of 5
(rand(1, length(timeStep))-0.5)*100 + 7; % Add noise to the true offset of 7
end
figure(1),clf(1)
plot(timeStep, Temperature);
xlabel('Time'); ylabel('Temperature'); title('Noisy Temperature');
timeStep2=ones(size(Temperature)).*timeStep;%lazy repmat
p=polyfit(timeStep2(:),Temperature(:),1);
hold on
plot(timeStep,polyval(p,timeStep),'--k')
hold off
More Answers (0)
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!