Why fft results of discrete Fourier series coefficients are different from the actual definition
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Romio
am 24 Mär. 2020
Kommentiert: Romio
am 24 Mär. 2020
I tried to find the fourier coefficients of this discrete time singal x[n] = [1 1 0 0 0] using fft to get the coeffiecits.
However, they differ from the definition of fourier series by the factor 1/N.
for example the output of fft for c_0 is 2, but by the defintion of fourier series, it has to be 2/N = 2/5
Could someone explain which one is true?
0 Kommentare
Akzeptierte Antwort
David Goodmanson
am 24 Mär. 2020
Hi Romio,
I believe you are referriing to the convention where (informally speaking)
f(x) = Sum c_n exp( 2*pi*i*f0*n*x) % ifft direction
c_n = (1/n) Sum f(x) exp(-2*pi*i*f0*n*x) % fft direction
(where f0 is chosen to give one oscillation over the length of the x record).
Then the c_n are straight amplitudes of the complex oscillatory functions. However, Matlab fft does not do things that way. Instead, it's
f(x) = (1/n) Sum c_n exp( 2*pi*i*f0*n*x) % ifft direction
c_n = Sum f(x) exp(-2*pi*i*f0*n*x) % fft direction
so if you want the first convention, you have to multiply the fft by 1/n. And multiply the ifft by n if you want to get back to where you were.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!