Coding a function to use the false position method to approximate roots

8 Ansichten (letzte 30 Tage)
Im trying to code together a function to approximate roots using the false psotion method. My current issues is that I can't understand how I should go about plugging in a polynomial into matlab in a standard form.
function [root, fx, ea, iter] = falsePosition(func, xl, xu, es, maxit, varargin)
%falsePosition finds the root of a function using false position method
%please input the func value in this format ((8x^4)-(2x^2)+x)---->[8 0 -2 1]
if nargin <3
error('3 or more arguements required')
elseif nargin<4
es=.0001;
maxit=200;
end
plop=1;
for iter= 1:maxit
if plop==1;
root1= xl-(((polyval(func,xl))*(xu-xl))/((polyval(func,xu))-(polyval(func,xl))));
xu=root1;
plop=2;
ea=10000000;
elseif ea>es
root2= xl-(((polyval(func,xl))*(xu-xl))/((polyval(func,xu))-(polyval(func,xl))));
ea=((root2-root1)/root2)*100;
xu=root2;
else
break
end
end
I need to be able to plug in xu and xl into the equation, and I need to be able to plug the equation into the function in the form of ((3*x^3)+(8*x^2)*1) and not in the form of an array as [3 8 1]
  2 Kommentare
Aaron Atkinson
Aaron Atkinson am 1 Mär. 2020
I think I need to clarify, the primary issue I am having is translating the entered equation into something usable by matlab, how should I do this?
Walter Roberson
Walter Roberson am 26 Dez. 2021
((8x^4)-(2x^2)+x) should be [8 0 -2 1 0] not [8 0 -2 1] -- the 0 at the end is the constant coefficient.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

darova
darova am 2 Mär. 2020
try matlabFunction
str = input('enter a function:\n');
f = matlabFunction(str);

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by