KNN classification accuracy problem
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
In my program accuracy is not increases I have given properly traning and testing input to knn classifier. I got following result, how I increase the accuracy rate?
Accuracy: 0.1125
Error: 0.8875
Sensitivity: 0.1125
Specificity: 0.9533
Precision: 0.1101
FalsePositiveRate: 0.0467
F1_score: NaN
MatthewsCorrelationCoefficient: 0.1179
Kappa: 0.8930
clear all;
clc;
%% BUILD DORSAL HAND VEIN TEMPLATE DATABASE
tic; %% calculating elapsed time for execution
%% load mat files
load('db1.mat');
load('db2.mat');
%% reshape into row vector for 100 classes
%% reshape into row vector for 10 classes
reduced_testdata = reshape(reduced_testdata,1,2,40); % one row,four column and 15(60/4) group for 20 classes
reduced_traindata = reshape(reduced_traindata,1,2,80); % one row,four column and 45(180/4) group for 20 classes
%% adjust dimension
% Adjust matrix dimension
P_test = cell2mat(reduced_testdata); % Convert cell array to matrix
P_train = cell2mat(reduced_traindata);
%% rearranges the dimensions of P_test and P_train
C = permute(P_test,[1 3 2]);
P_test = reshape(C,[],size(P_test,2),1);
C = permute(P_train,[1 3 2]);
P_train = reshape(C,[],size(P_train,2),1);
%% labeling class
train_label=load('train_label.txt');
test_label=load('test_label.txt');
%%% Normalisation
% P_train=P_train/256;
% P_test=P_test/256;
% Normalisation by min max
%
P_train=mapminmax(P_train,0,1);
P_test=mapminmax(P_test,0,1);
% Normalisation by Z - Scores
%
% P_train = zscore(P_train,0,2);
% P_test =zscore(P_test,0,2);
%'euclidean'; 'cityblock'; 'chebychev'; 'minkowski'; 'cosine'; 'correlation'; 'spearman'; 'hamming'; 'jaccard'; 'squaredeuclidean'
predictlabel = knnclassify(P_test, P_train, train_label,1,'euclidean','nearest');
%
cp = classperf(test_label,predictlabel);
% % % % %
Conf_Mat = confusionmat(test_label, predictlabel);
disp(Conf_Mat);
%
%
% disp('_____________Multiclass demo_______________')
% disp('Runing Multiclass confusionmat')
%
[c_matrix,Result,RefereceResult]= confusion.getMatrix(test_label,predictlabel);
%% calculating elapsed time for execution
toc
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!