How to make this into a Logistic Map while keeping most of my previous work?

3 Ansichten (letzte 30 Tage)
function [v,err,count] = Clapeyrons(P)
% Calculate molar volume as predicted by the Ideal Gas Law equation
% using the Newton-Raphson algorithm with initial estimate
% determined by ideal gas law.
% Inputs:
R = 0.082057; % Ideal gas constant in L atm / K mol
T = 293; % Temperature in K
Tc = 416.90; % Critical temperature of Cl2 in K
Pc = 78.72918; % Critical Pressure of Cl2 in atm
% a and b are Van der Waals constants for gas considered in
% atm L2/mol2 and L/mol respectively.
a = ((R^2)*(Tc^(5/2)))/(9*Pc*(2^(1/3)-1));
b = (R*Tc*(2^(1/3)-1))/(3*Pc);
P = 1; % Pressure in atm
% Outputs:
% v equals molar volume in L/mol as predicted by
% equation for gas considered at temperature T and pressure P.
% err equals modulus of function evaluated at approximate root.
% count is number of iterations taken by Newton-Raphson algorithm.
% Version 1: created 24/04/19. Author: Paul Curran
% Version 2: created 06/02/20. Author: Paul Curran
if (~isscalar(P)) || (~isreal(P)) || P <= 0
error('Input argument P must be positive real scalar.')
end
Iteration_limit = 20; % maximum number of iterations permitted
Tolerance=10^-7; % maximum acceptable value for modulus of
A = (a*P)/((R^2)*(T^(5/2)));
B = (b*P)/(R*T);
v = R * T / P;
Z = (P*v)/(R*T);
% Employ ideal gas law to obtain initial estimate
for count = 1:Iteration_limit + 1
% Terminate with error message if iteration limit exceeded:
if count == Iteration_limit + 1
error('Iteration limit reached. Iteration did not converge.')
end
f = (Z^3) - (Z^2) + (A-B-(B^2))*Z - (A*B);
% Terminate iteration if function is sufficiently small at current
% estimate
if abs(f)<Tolerance
break
end
f_dash = 3*Z^2 - 2*Z + (A - B - (B^2)); % Evaluate derivative of f
Z = Z - (f/f_dash); % Newton-Raphson iteration
v = Z*R*T/P; % molar volume found using Newton-Raphson
end
err = abs(f); % Error is magnitude of f(v) at final root estimate
end
P = [1,1.5,2,2.5,3,5,10,15,25,50,100];
R = 0.082057;
T = 293;
Tc = 416.90;
Pc = 78.72918;
V_real =zeros(11,1);
V_ideal =zeros(11,1);
for count = 1:11
V_real(count) = Clapeyrons(P(count));
%[v_real,err,count]=
%V_real = arrayfun(@(x) Clapeyrons(R,T,a,b,x), P);
V_ideal(count) = (R*T)/P(count);
%V_difference = V_ideal - V_waals;
end
plot(P,V_real)
hold on
plot(P,V_ideal,'x')
title('Molar Volume vs Pressure for Cl_2')
xlabel('Pressure P (atm)')
ylabel('Molar Volume v (L/mol)')
legend({'Redlich-Kwong Equation','Ideal Gas Law'},'Location','northeast')
I need V_real to be a logistic map that goes through points P. How do I set that up?

Antworten (0)

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by