How to apply The Kaiser rule in PCA?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
MUHAMMAD ALKHUDAYDI
am 11 Dez. 2019
Bearbeitet: Shubh Sahu
am 30 Jan. 2020
Hi,
In MATLAB there is a bulid function to apply principle component analysis PCA. However, I have a problem on applying The Kaiser rule which drop all components with eigenvalues under 1. For Example I want to apply this method on the data:
X = [1 2 3 4 5 ; -1 -3 -1 2 4 ; -2 1.5 3 2 -9 ; 1 -1 0.25 2.3 2.2];
[coeff,newdata,latend,tsd,variance] = pca(X)
Please can some one help me on this. Many thanks.
0 Kommentare
Akzeptierte Antwort
Shubh Sahu
am 30 Jan. 2020
Bearbeitet: Shubh Sahu
am 30 Jan. 2020
Hey!
Instead of calculating PCA go with SVD. Take under the under root of sigmas 's' and now you have eigenvalues. Check for kaiser rule and select the column with eigenvalue less than 1
X = [1 2 3 4 5 ; -1 -3 -1 2 4 ; -2 1.5 3 2 -9 ; 1 -1 0.25 2.3 2.2];
[u,s,v] = svd(X)
Please refer to this link for further information
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!