How to solve a plotting problem regarding straight lines
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Giuseppe
am 1 Dez. 2019
Bearbeitet: Giuseppe
am 3 Dez. 2019
How can I make the two lines meet in their intersection point as shown in the figure below ?
(I want to obtain the two lines that I've drawn using red dots!)
clc ;clear all; close all;
%Profilo
gamma = 1.4;
xdorso = [0 0.7 1]; xventre = [0 0.45 1];
ydorso = [0 0.03 0]; yventre = [0 -0.05 0];
delta1 = atand(0.03/0.44);
delta2 = atand(0.05/0.45);
delta3 = atand(0.03/0.56);
delta4 = atand(0.05/0.55);
n = 1000;
x = linspace(0,1,n);
alfa = -8:2:8;
deviazionedorso = delta1 + abs(alfa(1:4));
deviazioneventre = delta2 + alfa(5:end);
mach1 = 1.01:0.001:1.6;
lunghezza = length(mach1);
massimo = mach1;
for i = 1:lunghezza
m1 = mach1(i);
epsmin = asin(1/m1)*57.3;
eps = linspace(epsmin,90,30);
delta = abaco(eps,m1,gamma);
massimo(i)= max(delta);
figure(1)
plot(eps,delta);
hold on
end
machcriticodorso = deviazionedorso;
for i = 1:length(deviazionedorso)
calcolod = deviazionedorso(i);
for j = 1:lunghezza
if abs(massimo(j)-calcolod)<0.1
machcriticodorso(i) = mach1(j);
end
end
end
machcriticoventre = deviazioneventre;
for i = 1:length(deviazioneventre)
calcolov = deviazioneventre(i);
for j = 1:lunghezza
if abs(massimo(j)-calcolov)<0.1
machcriticoventre(i) = mach1(j);
end
end
end
machcriticosuperiore = [machcriticodorso machcriticoventre];
figure(4);
plot(alfa,machcriticosuperiore,'k-o');
xlabel('\alpha'); ylabel('M_{cr_{sup}}');
axis([-8 8 1 1.6])
0 Kommentare
Akzeptierte Antwort
Turlough Hughes
am 1 Dez. 2019
We don't really need all that code to answer the question. It would be much more preferable to just post some sample data. Anyway, I've tried to replicate your data as follows:
x=linspace(-8,8,9);
y=[linspace(0.5,0.28,4) linspace(0.29,0.59,5)];
Where x and y correspond to the data in alfa,machcriticosuperiore.
You could use a linear fit to the "two lines" and then solve for the point of intersection as follows:
idx=x<=-1;
l1=polyfit(x(idx),y(idx),1); % l1 is coefficient m, c, of a linear fit to the data
l2=polyfit(x(~idx),y(~idx),1);
xi=(l2(2)-l1(2))/(l1(1)-l2(1)); % When y of line 1 = y of line 2, you get xi=(c2-c1)/(m1-m2)
yi=l1(1)*xi+l1(2);
plot(x,y,'ok')
hold on, plot(xi,yi,'or')
You could also insert the intersection point into your original data and then plot with the line:
x=[x(idx) xi x(~idx)];
y=[y(idx) yi y(~idx)];
xlabel('\alpha'); ylabel('M_{cr_{sup}}');
plot(x,y,'-ok');
1 Kommentar
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!