Filter löschen
Filter löschen

Using ODE45 to solve Rossler equations

22 Ansichten (letzte 30 Tage)
jacob Mitch
jacob Mitch am 8 Nov. 2019
Beantwortet: Tanggo Tang am 29 Mär. 2021
The Rossler equations are defined as
x'(t)=-x(t)-y(t)
y'(t)=ax(t)+y(t)
z'(t)=b+z(t)(x(t)-c)
and I am trying to use ode45 to solve them
I have so far created a ross function file
function dx = ross(t,x)
%ross: Computes the derivatives involved in solving the
%ross equations.
a=-0.1;
b=2;
c=5.7;
%Right hand sides
dx=zeros(3,1);
dx(1)=-1*x(1)-1*x(2);
dx(2)=a*x(1)+x(2);
dx(3)=b+(x(3)*(x(1)-c));
and I am trying the below code but it doesnt stop running and seems to be stuck in a loop
clear all
x0=[-8 8 27];
tspan=[0,20];
[t,x]=ode45(@ross,tspan,x0)
%or run
[t,x]=ode45(@lorenz,tspan,x0)
%BUT NOT BOTH IN THE SAME CODE (1 OR THE OTHER LORENZ OR ROSS)
plot3(x(:,1),x(:,2),x(:,3),'b','linewidth',1.5)
however if I have instead of @ross but have @lorenz
[t,x]=ode45(@lorenz,tspan,x0)
and try
function dx = lorenz(t,x)
% Parameters
sigma=10;
beta=8/3;
rho=28;
% Differential Equations
dx=zeros(3,1);
dx(1)=sigma*(x(2)-x(1));
dx(2)=rho*x(1)-x(2)-x(1)*x(3);
dx(3)=x(1)*x(2)-beta*x(3);
it seems to work fine, my question is where am I going wrong with my ross equations

Antworten (2)

Jeremy
Jeremy am 8 Nov. 2019
You are correct ode45 appears to be stuck. But if you try
ode15s
it appears to work
  1 Kommentar
Jeremy
Jeremy am 8 Nov. 2019
One more thing - are you plotting the equation solutions vs themselves instead of vs. time intentionally?
figure, hold on
plot(t,x(:,1),t,x(:,2),t,x(:,3),'LineWidth',2)

Melden Sie sich an, um zu kommentieren.


Tanggo Tang
Tanggo Tang am 29 Mär. 2021
Hi you have err in ross attraction
function dx = ross(t,x)
a = 0.2;
b = 0.2;
c = 5.7 ;
dx=zeros(3,1);
dx(1)=-x(2)-x(3); %here
dx(2)=x(1)+a*x(2); %and here
dx(3)=b+(x(3)*(x(1)-c));
end

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by