Problem by star values lsqcurvefit

4 Ansichten (letzte 30 Tage)
Zuyu An
Zuyu An am 21 Okt. 2019
Kommentiert: Star Strider am 22 Okt. 2019
xdata = ...
[0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08];
ydata = ...
[-0.7597 -1.5641 4.331 10.226 10.328 10.43 9.2075 7.9845 6.9538 5.9227 4.7857 3.6488 2.1603 0.67176 0.22867 -0.21442 -0.10787];
fun = @(x,xdata)x(1)+x(2).*sqrt(x(3)./(2.*pi.*(x(4).*(xdata+x(5))).^3)).*exp(-(x(3).*((x(4).*(xdata+x(5)))-x(6)).^2)/((xdata+x(5)).*2.*x(4).*x(6).^2));
x0 = [ -10, 20, 1, 12, 0.005, 1 ];
x = lsqcurvefit(fun,x0,xdata,ydata)
B = fminsearch(@(b)norm(ydata - fun(b,xdata)), x0)
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt','MaxIter', 10000);
lb = [];
ub = [];
times = linspace(xdata(1),xdata(end));
plot(xdata,ydata,'ko',times,fun(x,times),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')
result is :
无标题.png
and with result from B = fminsearch(@(b)norm(ydata - fun(b,xdata)), x0) become i only worse result.
but by x0 = [ -10, 20, 1, 12, -0.1, 1 ] it should be already a good result, because
-10+20*sqrt(1/(2*pi*(12*(x+0.005))^3))*exp(-(1*((12*(x+0.005))-#2)^2)/((x+0.005)*24*2^2)) in Latex is already so:
why can i not use x0 = [ -10, 20, 1, 12, 0.005, 1 ] als start values, and how can i find a start values to fitting it?
Thank you very much first!

Akzeptierte Antwort

Star Strider
Star Strider am 21 Okt. 2019
I used the genetic algorithm (ga function) to fit them, and it took several attempts before I got a good set of parameters.
The code I used:
xdata = [0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08];
ydata = [-1.5641 4.331 10.226 10.328 10.43 9.2075 7.9845 6.9538 5.9227 4.7857 3.6488 2.1603 0.67176 0.22867 -0.21442 -0.10787];
fun = @(x,xdata)x(1)+x(2).*sqrt(x(3)./((2.*pi.*x(4).*(xdata+x(5))).^3)).*exp(-x(3).*((x(4).*(xdata+x(5))-x(6)).^3)./(2.*x(4).*(xdata+x(5)).*x(6).^2));
ftns = @(x) norm(ydata-fun(x,xdata));
PopSz = 500;
Parms = 6;
opts = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-6, 'MaxGenerations',2E3, 'PlotFcn',@gaplotbestf, 'PlotInterval',1);
t0 = clock;
fprintf('\nStart Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t0)
[x,fval,exitflag,output] = ga(ftns, Parms, [],[],[],[],[],[],[],[],opts)
t1 = clock;
fprintf('\nStop Time: %4d-%02d-%02d %02d:%02d:%07.4f\n', t1)
GA_Time = etime(t1,t0)
fprintf(1,'\tRate Constants:\n')
for k1 = 1:length(x)
fprintf(1, '\t\tTheta(%d) = %8.5f\n', k1, x(k1))
end
x0 = x(:);
x = lsqcurvefit(fun,x0,xdata,ydata)
xv = linspace(min(xdata), max(xdata), 250);
figure
plot(xdata, ydata, 'p')
hold on
plot(xv, fun(x,xv), '-r')
grid
It can take a while to get good parameter estimates. For example these:
x =
-8.347582247433408
0.838228906949566
0.441192639609259
0.120820987842452
0.004904510624840
-0.022856747683530
were the result of running this ga code for 75 times just now, then ‘fine tuning’ them with lsqcurvefit. It produced a very good fit, with the fitness value of 1.97.
There are no shortcuts for estimating parameters of complicated functions. I wish there were.
  4 Kommentare
Zuyu An
Zuyu An am 22 Okt. 2019
Ich ändert die Funktion bischen:
fun = @(x,xdata)x(1)+x(2).*sqrt(x(3)./((2.*pi.*x(4).*(xdata+x(5))).^3)).*exp(-x(3).*((x(4).*(xdata+x(5))-x(6)).^2)./(2.*x(4).*(xdata+x(5)).*x(6).^2));
mach 2.*pi.*x(4) in ^3
and now it fitting good with linspace and fminsearch
ganz komisch, but still thank you very much!
Star Strider
Star Strider am 22 Okt. 2019
As always, my pleasure!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Alex Sha
Alex Sha am 22 Okt. 2019
Hi, Zuyu An, what's your exact data?
xdata = [0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08];
ydata = [-0.7597 -1.5641 4.331 10.226 10.328 10.43 9.2075 7.9845 6.9538 5.9227 4.7857 3.6488 2.1603 0.67176 0.22867 -0.21442 -0.10787];
or
xdata = [0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08];
ydata = [-1.5641 4.331 10.226 10.328 10.43 9.2075 7.9845 6.9538 5.9227 4.7857 3.6488 2.1603 0.67176 0.22867 -0.21442 -0.10787];
note the first one set data (0,-0.7579) is missed in the later.
Also, your function foumual below seems to be overfit, which lead to multiple solutions
fun = @(x,xdata)x(1)+x(2).*sqrt(x(3)./(2.*pi.*(x(4).*(xdata+x(5))).^3)).*exp(-(x(3).*((x(4).*(xdata+x(5)))-x(6)).^2)/((xdata+x(5)).*2.*x(4).*x(6).^2));
if the above function adjust to the follow by deleting "x(2)", there will be unique solution with same goodness of fit.
fun = @(x,xdata)x(1)+sqrt(x(3)./(2.*pi.*(x(4).*(xdata+x(5))).^3)).*exp(-(x(3).*((x(4).*(xdata+x(5)))-x(6)).^2)/((xdata+x(5)).*2.*x(4).*x(6).^2));
  2 Kommentare
Bjorn Gustavsson
Bjorn Gustavsson am 22 Okt. 2019
This is the core of the problem. That the parameterization has the form - that all points on the curve have the same value often makes the optimization-functions to rumble around in the most peculiar paths in the parameter-space. The function-parameterization have another similar possible-problem: is in my experience better to implement as with different meaning of p(4) and p(5). Fixing the first should be the most important.
HTH
Zuyu An
Zuyu An am 22 Okt. 2019
It should be with first data(0, -0.7579)

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by