Steepest descent method algorithm
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Luqman Saleem
am 17 Sep. 2019
Kommentiert: Saleh Msaddi
am 9 Mär. 2020
For practice purpose, I want to find minima of -humps() function.
I have written the following code but it's not giving correct answer
clear; clc;
%function
f = @(x) -humps(x);
dx = 0.1; %step length
x_current = 1; %starting guess
delta = 1e-4; %threshold value
alpha = 0.1; %finding optimal step length
g = inf; %starting gradient
while norm(g) > delta
%gradient by finite difference
f1 = f(x_current + dx/2);
f2 = f(x_current - dx/2);
g = (f1-f2)/dx;
x_next = x_current-alpha*g; %new solution
x_current = x_next;
fprintf('%d %d\n',x_current,x_next);
x_current = x_next;
end
It give 5.543798e+01 as solution while the solution should either be 0.9 or 0.3 (local and global minimas, respectivily).
Whate am I missing here? can anyone help?
0 Kommentare
Akzeptierte Antwort
Matt J
am 17 Sep. 2019
alpha is too big. Try alpha=0.001.
2 Kommentare
Saleh Msaddi
am 9 Mär. 2020
In steepest descent, you would always get the local minima. You'd only get the global minima if you start with an initial point that would converge to the global minima; if you're lucky enough. If your stepping size is too small, your solution may converge too slow or might not converge to a local/global minima. On the contradictory, if you choose a big step size, your solution may miss the minimal point.
Weitere Antworten (0)
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!