NCA feature selection method

12 Ansichten (letzte 30 Tage)
Alaa Almazroey
Alaa Almazroey am 11 Sep. 2019
Kommentiert: Alexis am 29 Sep. 2020
i tried to use NCA feature selection method to select the most relitive features from 16483 features, but i always got all features because the bestlambda and bestloss are always 0. how can work in this problem.
another question how can i set the lambdavals, is there a rule or something for linspace () parameter? as well how can i select the best value for 'tol' ?
cvx=cvpartition(size(Features,1),'kfold',5);
numvalidsets = cvx.NumTestSets;
n = cvx.TrainSize(1);
lambdavals=(linspace(0,20,20)./n;
lossvals = zeros(length(lambdavals),numvalidsets);
for w = 1:length(lambdavals)
for p =1:numvalidsets
train=1;
test=1;
indextrain=training(cvx,p);
for i=1:size(Features,1)
if indextrain(i)==1
XTrain(train,:)=Features(i,:);
YTrain(train)=label(i);
train=train+1;
else
XTest(test,:)=Features(i,:);
YTest(test)=label(i);
test=test+1;
end
end
TrainData= XTrain,YTrain;
TestData =XTest,YTest;
nca = fscnca(XTrain,YTrain,'FitMethod','exact', ...
'Solver','sgd','Lambda',lambdavals(w), ...
'IterationLimit',1,'Standardize',true);
lossvals(w,p) = loss(nca,XTest,YTest,'LossFunction','classiferror');
end
end
%%
meanloss = mean(lossvals,2);
[~,idx] = min(meanloss) % Find the index
bestlambda = lambdavals(idx) % Find the best lambda value
bestloss = meanloss(idx)
nca = fscnca(XTrain,YTrain,'FitMethod','exact','Solver','sgd',...
'Lambda',bestlambda,'Standardize',true,'Verbose',1);
tol = 0.55;
selidx = find(nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights)))
Best_Features_train = XTrain(:,selidx);
  1 Kommentar
Alexis
Alexis am 29 Sep. 2020
I have this same problem. Without an error message or warning it's not clear to me where to start. I have 14 features and over 5,000 observations.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Fit Postprocessing finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by