Using ODE45 to solve two coupled second order ODEs
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ricardo Machado
am 25 Aug. 2019
Beantwortet: madhan ravi
am 25 Aug. 2019
I used the ODE to vector field function to change my 2 coupled 2nd order ODEs to a system of 1st order ODEs.
syms k1 k2 m t x1(t) x2(t) Y
Dx1 = diff(x1);
D2x1 = diff(x1,2);
Dx2 = diff(x2);
D2x2 = diff(x2,2);
Eq1 = D2x1 == (-(k1+k2)*x1+(k2)*x2)/m
Eq2 = D2x2 == ((k2*x1)+((k1+k2)*x2))/m
[V,Subs] = odeToVectorField(Eq1, Eq2)
ftotal = matlabFunction(V, 'Vars',{t,Y,k1,k2,m})
It generated this
ftotal =
function_handle with value:
@(t,Y,k1,k2,m)[Y(2);((k1+k2).*Y(1)+k2.*Y(3))./m;Y(4);-((k1+k2).*Y(3)-k2.*Y(1))./m]
However, when I tried to use ODE45 to solve it, i got errors. The initial conditions are x(0)= (1 0)' and ẋ(0)= (0 0)'
tspan = [0 20];
y0 = [1 0; 0 0];
[T,Y] = ode45(ftotal,tspan,y0)
plot(T,Y)
grid
Any help would be appreciated.
Thank you
1 Kommentar
Akzeptierte Antwort
madhan ravi
am 25 Aug. 2019
syms x1(t) x2(t) k1 k2 m
Dx1 = diff(x1);
D2x1 = diff(x1,2);
Dx2 = diff(x2);
D2x2 = diff(x2,2);
Eq1 = D2x1 == (-(k1+k2)*x1+(k2)*x2)/m;
Eq2 = D2x2 == ((k2*x1)+((k1+k2)*x2))/m;
[V,Subs] = odeToVectorField(Eq1, Eq2);
ftotal = matlabFunction(V, 'Vars',{'t','Y','k1','k2','m'});
% ^-^ - single quotes
interval = [0 20];
y0 = [1 0; 0 0]; %initial conditions
% v-k2
ySol = ode45( @(t,Y)ftotal(t,Y,1,1,1),interval,y0);
% k1-^ m-^
tValues = linspace(interval(1),interval(2),1000);
yValues = deval(ySol,tValues,1); %number 1 denotes first solution likewise you can mention 2 ,3 & 4 for the next three solutions
plot(tValues,yValues)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!