How can I do mutli-class classification with the 3D Unet ?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
The 3D Unet segmentation example features a binary class classification.
I was tying to extend the example to multi-class classification but I kept on having a constant loss function.
Was anyone able to perform multi-class classification with the 3D unet in matlab ?
0 Kommentare
Antworten (1)
Shashank Gupta
am 27 Aug. 2019
Multiclass classifiers are very similar to binary classifier, you may need to change the last layer of your model to make the multiclass classifier output compatible with your model. There is a function available in MATLAB "pixelLabelDatstore", which can generate the pixel label images that in turn may be used as a label data target in your network for semantic segmentation.
Also, there can be many reasons to get a constant loss function, Data imbalance could be one. Try using a weighted multiclass Dice loss function instead of “crossentropy”.
If that does not help, try using an adaptive learning rate for your network. Also check the target images before feeding it to your network, sometimes the target and predictive images comes out to be transpose of each other because of how the MATLAB handles the data.
May be 3D tumor segmentation example can help you set up your model.
3 Kommentare
Shashank Gupta
am 30 Aug. 2019
Hi Attallah,
I am sorry but it’s difficult to pin point any specific reason of getting a constant loss function, there could be many. Although you can do some more research in your model and see what causing the problem, Try Visualizing “softmax” output instead of looking directly at classes and see if you can find any pattern. It’s also possible that the model underfit (rarely happens). Also check the “bias” term in each layer, see if it is not sufficiently large (this makes your layer output zero). It can also happened that the optimizer stuck at some saddle point and not able to come out from there, May be a different optimizer can help (although I can safely assume you must have tried this).
I cannot think of any more reason as of now.
Hope this give you some lead
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!