PCA expansion random variables

2 Ansichten (letzte 30 Tage)
Jaime  de la Mota
Jaime de la Mota am 12 Jun. 2019
Bearbeitet: Adam am 12 Jun. 2019
Hello everyone.
Right now I am applying PCA to a set of observations. [coeffUV, score_vectorUV, latentUV, tsquaredUV, explainedUV, muUV]=pca(Z, 'Centered',false); being Z a gaussian correlation kernel.
As far as I understand, Score columns are the eigenfunctions. I have read in some books that if one multiplies the eigenfunctions (columns of score) by the origninal matrix data, gaussian random variables are obtained. Hower, if I write randvar=Z*score(:,1); and hist(randvar) I don't get a Gaussian histogram.
Can someone tell me what I am doing wrong?
Thanks.
  1 Kommentar
Adam
Adam am 12 Jun. 2019
Bearbeitet: Adam am 12 Jun. 2019
The columns of the coeff output are the eigenvectors, as explained in
doc pca

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by