For J and L (J<L) I want to find that values of p and q which satisfies mod(((i^b-i^a)*(i^d-i^c)),j)~=0 for all values of 0<=a<b<=J-1 and 0<=c<d<=L-1. If mod(((i^b-i^a)*(i^d-i^c)),j)==0 at any stage we break the loop and go for next values of p and q
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jasvinder Singh
am 5 Jun. 2019
Kommentiert: Jasvinder Singh
am 5 Jun. 2019
J=input('Value of J: ');
L=input('Value of L: ');
for j = L:6;
for i = 2:j-1;
for a=0:J-1;
for b=a+1:J-1;
for c = 0:L-1;
for d = c+1:L-1;
if mod(((i^b-i^a)*(i^d-i^c)),j)~=0
p_q=[i,j]
end
end
end
end
end
end
end
output:
p_q = 2 3
p_q = 2 3
p_q = 2 4
p_q = 2 4
p_q = 2 4
p_q = 2 5
p_q = 2 5
p_q = 2 5
p_q = 3 5
p_q = 3 5
p_q = 3 5
p_q = 4 5
p_q = 4 5
p_q = 2 6
and so on.
Here the required answer is p=2 and q=5; it is the only combination for which mod(((i^b-i^a)*(i^d-i^c)),j)~=0 for any values of a,b,c,d. But here it is showing so many answers. Kindly help me.
2 Kommentare
Akzeptierte Antwort
Matt J
am 5 Jun. 2019
Bearbeitet: Matt J
am 5 Jun. 2019
[a,b,c,d]=ndgrid(0:J-1,0:J-1, 0:L-1, 0:L-1);
k=a<b & c<d;
[a,b,c,d]=deal( a(k), b(k), c(k), d(k)); %all allowed combinations
p_q=cell(6,6);
for j = L:6
for i = 2:j-1
if all( mod( (i.^b-i.^a).*(i.^d-i.^c) ,j) )
p_q{i,j} =[i,j];
end
end
end
p_q=vertcat(p_q{:})
3 Kommentare
Matt J
am 5 Jun. 2019
But d cannot equal 3 when L=3. In your original post, you say that 0<=d<=L-1, so the maximum value d can assume is 2.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!