Plotting a multivariable function
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Akshay Pratap Singh
am 20 Feb. 2019
Kommentiert: Akshay Pratap Singh
am 20 Feb. 2019
I wrote a code for plotting a mutivariable function but getting error like "Error using fplot (line 136)
Invalid parameter '0 ...'.
Error in SFDBMDNLK (line 83)
fplot(SF,x,SF1,x).
How can I resolve it?
code:
clear all
clc
format longEng
syms y1 y2 x
phi=(pi/180)*39;
delta=(pi/180)*26;
gma=18.4;
h=4;
h1=1.91;
h2=0.088;
L=h+h1+h2;
q=0;
beta=1;
alfa=1;
Ra1=-1;
Ra2=-(alfa*(y2))^0.5;
Rp1=3*(beta*(1-y1))^0.5;
Rp2=3*(alfa*(y2))^0.5;
delma1=0.5*(1-Ra1)*delta;
delma2=-0.5*(1-Ra2)*delta;
delmp1=0.5*(Rp1-1)*delta;
delmp2=0.5*(Rp2-1)*delta;
ka1=(2*cos(phi)^2)/(cos(phi)^2*(1+Ra1)+cos(delma1)*(1-Ra1)*(1+sqrt((sin(phi+delma1)*sin(phi))/cos(delma1)))^2);
ka2=(2*cos(phi)^2)/(cos(phi)^2*(1+Ra2)+cos(delma2)*(1-Ra2)*(1+sqrt((sin(phi+delma2)*sin(phi))/cos(delma2)))^2);
kp1=1+0.5*(Rp1-1)*((cos(phi)^2/(cos(delmp1)*(-sqrt((sin(phi+delmp1)*sin(phi))/cos(delmp1))+1)^2))-1);
kp2=1+0.5*(Rp2-1)*((cos(phi)^2/(cos(delmp2)*(-sqrt((sin(phi+delmp2)*sin(phi))/cos(delmp2))+1)^2))-1);
fup1=matlabFunction(kp1*y1*cos(delmp1));
Final_result_p1=gma*(x-h)^2*integral(fup1,0,1);
M21=matlabFunction(kp1*cos(delmp1)*y1);
Final_result_m21=gma*h1*(x-h)^2*integral(M21,0,1);
M22=matlabFunction(kp1*cos(delmp1)*y1^2);
Final_result_m22=gma*(x-h)^3*integral(M22,0,1);
Final_result_m2=Final_result_m21+Final_result_m22;
Hfup1=matlabFunction(kp1*y1*cos(delmp1));
HFinal_result_p1=gma*h1^2*integral(Hfup1,0,1);
T31=matlabFunction(kp2*cos(delmp2));
HFinal_result_T31=gma*(h+h1)*(x-h-h1)*integral(T31,0,1);
T32=matlabFunction(ka2*cos(delma2));
HFinal_result_T32=gma*h1*(x-h-h1)*integral(T32,0,1);
T33=matlabFunction(kp2*cos(delmp2)*y2-ka2*cos(delma2)*y2);
HFinal_result_T33=gma*(x-h-h1)^2*integral(T33,0,1);
T3=HFinal_result_T31+HFinal_result_T32+HFinal_result_T33;
M21=matlabFunction(kp1*cos(delmp1)*y1);
Result_M21=gma*h1*(x-h)^2*integral(M21,0,1);
M22=matlabFunction(kp1*cos(delmp1)*y1^2);
Result_M22=gma*(x-h)^3*integral(M22,0,1);
M23=matlabFunction(kp1*y1*cos(delmp1));
Result_M23=gma*(x-h-h1)*(x-h)^2*integral(M23,0,1);
M31=matlabFunction(kp2*cos(delmp2)*y2);
Result_M31=gma*(h+h1)*0.5*(x-h-h1)^2*integral(M31,0,1);
M32=matlabFunction(ka2*cos(delma2)*y2);
Result_M32=gma*h1*0.5*(x-h-h1)^2*integral(M32,0,1);
M3=Result_M31-Result_M32;
M4=matlabFunction((kp2*cos(delmp2)-ka2*cos(delma2))*y2*(1-y2));
Result_M4=gma*(x-h-h1)^3*integral(M4,0,1);
MT1=-0.5*ka1*gma*x^2*cos(delma1);
MM1=-(1/6)*ka1*gma*x^3*cos(delma1);
MT2=-0.5*ka1*gma*x^2*cos(delma1);
MM2=-(1/6)*ka1*gma*x^3*cos(delma1);
i=0;
for x=0:0.02:L
i=i+1;
if(x<h)
SF(i)=MT1;
SF1(i)=0;
BM(i)=MM1;
BM1(i)=0;
elseif(x>=h && x<(h+h1))
SF(i)=MT2+Final_result_p1;
SF1(i)=0;
BM(i)=MM2+Final_result_m2;
BM1(i)=0;
else
SF(i)=-0.5*ka1*gma*(h+h1)^2*cos(delma1) + HFinal_result_p1 - T3;
SF1(i)=0;
BM(i)=-0.5*ka1*gma*(h+h1)^2*(((h+h1)/3)+(x-h-h1))*cos(delma1)+ M3 - Result_M4; %0.5*kp1*gma*h1^2*((h1/3)+(x-h-h1))*cos(delmp1)-0.5*gma*(x-h-h1)^2*(kp2*(h+h1)*cos(delmp2)-ka2*h1*cos(delma2))-(1/6)*(kp2*cos(delmp2)-ka2*cos(delma2))*(x-h-h1)^3;
BM1(i)=0;
end
end
x=0:0.02:L;
subplot(2,1,1);
fplot(SF,x,SF1,x)
xlabel('Length of the beam in m')
ylabel('Shear Force in KN')
title('Shear force diagram')
col_header={'x',SF};
xlswrite('data.xlsx',[x(:),SF(:)],'Sheet1','A2');
xlswrite('data.xlsx',col_header,'Sheet1','A1');
subplot(2,1,2)
fplot(BM,x,BM1,x)
xlabel('Length of the beam in m')
ylabel('Bending Moment in KN-m')
title('Bending Moment diagram')
col_header={'x',BM};
xlswrite('data.xlsx',[x(:),BM(:)],'Sheet1','A2');
xlswrite('data.xlsx',col_header,'Sheet1','A1');
1 Kommentar
Akzeptierte Antwort
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu MuPAD finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!