How does bayesopt fit a Gaussian process regression model to noisy data?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
James Finley
am 15 Jan. 2019
Kommentiert: Don Mathis
am 17 Jan. 2019
Hi,
I am using bayesopt to optimise a non-deterministic objective function. I have set the ‘IsObjectiveDeterministic’ input argument to ‘false’, to reflect the stochastic nature of my objective function. My objective function features different levels of noise, depending on the input that is applied to the model.
My question is, does the Gaussian process regression model used in bayesopt assume a constant variance on the noise applied to objective function, or does the GPR model use a non-identically distributed noise for different data points in the observed data? If the latter case is true, how is the noise estimated for different inputs?
Many thanks
0 Kommentare
Akzeptierte Antwort
Don Mathis
am 16 Jan. 2019
Bearbeitet: Don Mathis
am 16 Jan. 2019
bayesopt uses fitrgp to fit the GP models, which assumes constant noise everywhere.
2 Kommentare
Don Mathis
am 17 Jan. 2019
That's part of the Gaussian Process learning algorithm, described here https://www.mathworks.com/help/stats/gaussian-process-regression-models.html
Weitere Antworten (1)
Resul Al
am 17 Jan. 2019
Hi Don,
Is there a way to make fitrgp to estimate heteroscedastic noise, i.e noise variance is not constant everywhere?
Thank you.
1 Kommentar
Don Mathis
am 17 Jan. 2019
fitrgp provides no built-in way to do that. It may be possible to do it with a custom kernel function, but I'm not sure.
Siehe auch
Kategorien
Mehr zu Gaussian Process Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!