sir,I have to do the fourier bessel cepstral coefiicient (FBCC) for an audio to extract the features. how to do it?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I done a code for mfcc. but for FBCC i have to do the fourier bessel coefficient after the windowing (or before mel frequency filter bank). but i dont know how to do it. Can you please help me to complete the code. I will give my code here.
[audio, fs1] = audioread('cryrumble.wav');
%sound(x,fs1);
ts1=1/fs1;
N1=length(audio);
Tmax1=(N1-1)*ts1;
t1=(0:ts1:Tmax1);
figure;
plot(t1,audio),xlabel('Time'),title('Original audio');
fs2 = (20/441)*fs1;
y=resample(audio,2000,44100);
%sound(y,fs2);
ts2=1/fs2;
N2=length(y);
Tmax2=(N2-1)*ts2;
t2=(0:ts2:Tmax2);
figure;
plot(t2,y),xlabel('Time'),title('resampled audio');
%Step 1: Pre-Emphasis
a=[1];
b=[1 -0.95];
z=filter(b,a,y);
subplot(413),plot(t2,z),xlabel('Time'),title('Signal After High Pass Filter - Time Domain');
subplot(414),plot(fs2,fftshift(abs(fft(z)))),xlabel('Freq (Hz)'),title('Signal After High Pass Filter - Frequency Spectrum');
nchan = size(y,2);
for chan = 1 : nchan
%subplot(1, nchan, chan)
spectrogram(y(:,chan), 256, [], 25, 2000, 'yaxis');
title( sprintf('spectrogram of resampled audio ' ) );
end
% Step 2: Frame Blocking
frameSize=1000;
% frameOverlap=128;
% frames=enframe(y,frameSize,frameOverlap);
% NumFrames=size(frames,1);
frame_duration=0.06;
frame_len = frame_duration*fs2;
framestep=0.01;
framestep_len=framestep*fs2;
% N = length (x);
num_frames =floor(N2/frame_len);
% new_sig =zeros(N,1);
% count=0;
% frame1 =x(1:frame_len);
% frame2 =x(frame_len+1:frame_len*2);
% frame3 =x(frame_len*2+1:frame_len*3);
frames=[];
for j=1:num_frames
frame=z((j-1)*framestep_len + 1: ((j-1)*framestep_len)+frame_len);
% frame=x((j-1)*frame_len +1 :frame_len*j);
% identify the silence by finding frames with max amplitude less than
% 0.025
max_val=max(frame);
if (max_val>0.025)
% count = count+1;
% new_sig((count-1)*frame_len+1:frame_len*count)=frames;
frames=[frames;frame];
end
end
% Step 3: Hamming Windowing
NumFrames=size(frames,1);
hamm=hamming(1000)';
windowed = bsxfun(@times, frames, hamm);
% Step 4: FFT
% Taking only the positive values in the FFT that is the first half of the frame after being computed.
ft = abs( fft(windowed,500, 2) );
plot(ft);
% Step 5: Mel Filterbanks
Lower_Frequency = 100;
Upper_Frequency = fs2/2;
% With a total of 22 points we can create 20 filters.
Nofilters=20;
lowhigh=[300 fs2/2];
%Here logarithm is of base 'e'
lh_mel=1125*(log(1+lowhigh/700));
mel=linspace(lh_mel(1),lh_mel(2),Nofilters+2);
melinhz=700*(exp(mel/1125)-1);
%Converting to frequency resolution
fres=floor(((frameSize)+1)*melinhz/fs2);
%Creating the filters
for m =2:length(mel)-1
for k=1:frameSize/2
if k<fres(m-1)
H(m-1,k) = 0;
elseif (k>=fres(m-1)&&k<=fres(m))
H(m-1,k)= (k-fres(m-1))/(fres(m)-fres(m-1));
elseif (k>=fres(m)&&k<=fres(m+1))
H(m-1,k)= (fres(m+1)-k)/(fres(m+1)-fres(m));
elseif k>fres(m+1)
H(m-1,k) = 0;
end
end
end
%H contains the 20 filterbanks, we now apply it to the processed signal.
for i=1:NumFrames
for j=1:Nofilters
bankans(i,j)=sum((ft(i,:).*H(j,:)).^2);
end
end
figure;
plot(H);
% Step 6: Nautral Log and DCT
% pkg load signal
%Here logarithm is of base '10'
logged=log10(bankans);
for i=1:NumFrames
mfcc(i,:)=dct2(logged(i,:));
end
%plotting the MFCC
figure
hold on
for i=1:NumFrames
plot(mfcc(i,1:13));
end
hold off
% save c5 mfcc
i= mfcc;
save i i
load i.mat
X=i;
k=1;
[IDXi,ci] = kmeans(X,k);
save c41i ci
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Multirate Signal Processing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!