Projection of a point onto a closed convex
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Donigo Fernando Sinaga
am 18 Nov. 2018
Bearbeitet: Bruno Luong
am 20 Nov. 2018
I have a point P(50, 5000) and a curve (x.^2 - 2*x - 1) with x = [0:100]. How do I find the closest point on that curve to point P?
Thank you.
0 Kommentare
Akzeptierte Antwort
Bruno Luong
am 18 Nov. 2018
Bearbeitet: Bruno Luong
am 18 Nov. 2018
Q=[50;5000];
% Projection candidates on x.^2-2*x-y-1 = 0
P=ConicPrj(Q,[1 0; 0 0],[-2;-1],-1);
% Find the closest
[~,loc]=min(sum((P-Q).^2,1));
P=P(:,loc);
x=P(1)
y=P(2)
The projection is
x = 71.723733062992125
y = 4.999846418365362e+03
4 Kommentare
Bruno Luong
am 20 Nov. 2018
Bearbeitet: Bruno Luong
am 20 Nov. 2018
as written in the H1 line of ConicPrj , the conic is implicit equation -I change x to v here to avoid confusion with your x
E = { v such that: v'*A*v + b'*v + c = 0}
In your case, if I define v := [x;y];
the equation of parabolic is
x^2- 2*x - y -1 = 0
Meaning
x*(1)*x + x*0*y + y*0*x + y*0*y + (-2)*x + (-1)*y -1 = 0
^ ^ ^ ^ ^ ^ ^
A(1,1) A(1,2) A(2,1) A(2,2) b(1) b(2) c
or equivalently
v' * [1 0; 0 0] * v + [-2; -1]'*v - 1 = 0;
Therefore
A=[1 0; 0 0]; b = [-2; -1]; and c = -1;
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!